
About Communications Page 1 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

About Communications
The file input and output (I/O) functions (CreateFile, CloseHandle, ReadFile, ReadFileEx, WriteFile,
and WriteFileEx) provide the basic interface for opening and closing a communications resource handle
and for performing read and write operations. The Microsoft® Win32® API also includes a set of
communications functions that provide access to communications resources. This overview describes the
use of file I/O and communications functions, which enable applications to perform the following tasks:

Open a handle to a specified communications resource.
Set and query the configuration of a serial communications resource.
Read from or write to a serial communications resource.
Monitor a specified set of events that might occur for a given serial communications resource.
Send a control command to the device driver associated with a specified communications resource,
causing the driver to execute an extended function.

Communications Resource Handles

A process uses the CreateFile function to open a handle to a communications resource. For example,
specifying COM1 opens a handle to a serial port, and LPT1 opens a handle to a parallel port. If the
specified resource is currently being used by another process, CreateFile fails. Any thread of the process
can use the handle returned by CreateFile to identify the resource in any of the functions that access the
resource.

When using CreateFile to open a handle directly to a device, an application must use the special characters
" \\ .\" to identify the device. For example, to open a handle to drive A, specify " \\ .\a:" for the lpszName
parameter of CreateFile. The calling process can use the handle in the DeviceIoControl function to send
control codes to the device.

When the process calls CreateFile to open a communications resource, it specifies the following attributes:

What type of read-write access exists for the specified resource.
Whether the handle can be inherited by child processes.
Whether the handle can be used in overlapped (asynchronous) I/O operations. (For a description of
overlapped operations, see Synchronization.)

When the process uses CreateFile to open a communications resource, it must specify certain values for
the following parameters:

The fdwShareMode parameter must be zero, opening the resource for exclusive access.
The fdwCreate parameter must specify the OPEN_EXISTING flag.
The hTemplateFile parameter must be NULL.

Modification of Communications Resource Settings

When the CreateFile function opens a handle to a serial communications resource, the system initializes
and configures the resource according to the values set up the last time the resource was opened.
Preserving the previous settings enables the user to retain the settings specified through an mode command
when the device is reopened. The values inherited from the previous open operation include the
configuration settings of the device control block (a DCB structure) and the time-out values used in I/O

About Communications Page 2 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

operations. If the device has never been opened, it is configured with the system defaults.

To determine the initial configuration of a serial communications resource, a process calls the
GetCommState function, which fills in a serial port DCB structure with the current configuration settings.
To modify this configuration, a process specifies a DCB structure in a call to the SetCommState function.

Members of the DCB structure specify the configuration settings such as the baud rate, the number of data
bits per byte, and the number of stop bits per byte. Other DCB members specify special characters and
enable parity checking and flow control. When a process needs to modify only a few of these configuration
settings, it should first call GetCommState to fill in a DCB structure with the current configuration. Then
the process can adjust the important values in the DCB structure and reconfigure the device by calling
SetCommState and specifying the modified DCB structure. This procedure ensures that the unmodified
members of the DCB structure contain appropriate values. For example, a common error is to configure a
device with a DCB structure in which the structure's XonChar member is equal to the XoffChar member.

The BuildCommDCB function provides another way to modify a DCB structure. BuildCommDCB uses
a string with the same form as the command-line arguments of the mode command to specify the baud
rate, parity scheme, number of stop bits, and number of data bits. The remaining members of DCB are not
changed by this function, except that the appropriate members are set to disable XON/XOFF and hardware
flow control. BuildCommDCB only modifies a DCB structure; it does not reconfigure the device.

A process can reconfigure a communications resource by using the GetCommProperties function to get
information from a device driver about the configuration settings that it supports. The process can use this
information to avoid specifying a configuration that is not supported.

The SetCommState function reconfigures the communications resource, but it does not affect the internal
output and input buffers of the specified driver. The buffers are not flushed, and pending read and write
operations are not terminated prematurely.

A process reinitializes a communications resource by using the SetupComm function, which performs the
following tasks:

Terminates pending read and write operations, even if they have not been completed.
Discards unread characters and frees the internal output and input buffers of the driver associated
with the specified resource.
Reallocates the internal output and input buffers.

A process is not required to call SetupComm. If it does not, the resource's driver initializes the device with
the default settings the first time that the communications resource handle is used.

Communications Resource Configuration

The COMMCONFIG structure defines the configuration of a communications resource, serial or
otherwise. The format of the structure varies depending on the type of communications resource (the
provider subtype). The first few structure members are common to all communications resources;
additional members are defined for specific provider subtypes. Specific service providers may extend the
COMMCONFIG structure as well.

An application can get and set the configuration of a communications resource by using the
GetCommConfig and SetCommConfig functions. When opened, a communications resource is initialized
using the default configuration for its provider subtype. To get and set the default configuration for a
provider subtype, use the GetDefaultCommConfig and SetDefaultCommConfig functions.

To prompt the user for configuration information, use the CommConfigDialog function. This function

About Communications Page 3 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

displays a dialog box defined by the service provider and fills in a COMMCONFIG structure based on
user input.

Modem Configuration

Modem configuration functions enable you to configure a modem before making a connection. An
application can set modem options and determine the features of a modem without using commands
specific to any modem device. Following are the general features an application may set before making a
call:

Primary mode of operation (synchronous, asynchronous, and whether error control is enabled).
V.42 error control (defined by CCITT recommendation V.42), including specific parameters. CCITT
stands for the International Telegraph and Telephone Consultative Committee.
V.42bis (defined by CCITT recommendation V.42bis) and MNP5 data compression.
Time-out options, including call setup, inactivity, and buffered data delivery.

Before setting a modem's configuration, an application should determine the capabilities of the modem
device by using the GetCommProperties function. This function fills in a COMMPROP structure. This
structure contains both a general portion, which applies to all communications devices, and a portion that is
specific to each provider subtype. For modem devices, the provider-specific portion of the COMMPROP
structure is a MODEMDEVCAPS structure.

An application can get and set the current configuration of a modem by using the GetCommConfig and
SetCommConfig functions, both of which use a COMMCONFIG structure. This structure contains both
a general portion, which applies to all communications devices, and a portion that is specific to each
provider subtype. For modem devices, the provider-specific portion of the COMMCONFIG structure is a
MODEMSETTINGS structure.

After configuring a modem, an application can use the Telephony Application Programming Interface
(TAPI) to actually establish a connection.

The modem configuration functions do not provide for long-term management and maintenance of a
modem. Modem service providers should supply modem configuration dialog boxes for this purpose.

Read and Write Operations

The Win32 API supports both synchronous and asynchronous (overlapped) file I/O operations on serial
communications resources. Overlapped operations enable the calling thread to perform other tasks while
the operation executes in the background. A thread uses the ReadFile or ReadFileEx function to read
from a communications resource, and the WriteFile or WriteFileEx function to write to a
communications resource. ReadFile and WriteFile can be performed synchronously or asynchronously.
ReadFileEx and WriteFileEx can only be performed asynchronously.

The behavior of these read and write functions is affected by whether the function is executed as an
overlapped operation, whether the time-out parameters are associated with the handle, and whether flow
control parameters are associated with the handle.

A thread can also write to a communications resource by using the TransmitCommChar function, which
transmits a specified character ahead of any pending data in the output buffer. This function is useful for
transmitting a high priority signal character to the receiving system. Transmission of the high priority
character is still subject to flow control and write time-outs, and the operation is performed synchronously.

About Communications Page 4 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

A thread can use the PurgeComm function to discard all characters in a device's output or input buffer.
PurgeComm can also terminate pending read or write operations, even if the operations have not been
completed. If a thread uses PurgeComm to flush an output buffer, the deleted characters are not
transmitted. To empty the output buffer while ensuring that the contents are transmitted, a thread can call
the FlushFileBuffers function (a synchronous operation). Note, however, that FlushFileBuffers is subject
to flow control but not to write time-outs, and it will not return until all pending write operations have been
transmitted.

Overlapped Operations

Overlapped operations enable a thread to execute a time-consuming I/O operation in the background,
leaving the thread free to perform other tasks. To enable overlapped I/O operations on a communications
resource, the thread must specify the FILE_FLAG_OVERLAPPED flag in the CreateFile function when
the handle is opened. To execute the ReadFile or WriteFile function as an overlapped operation, the
calling thread must specify a pointer to an OVERLAPPED structure.The OVERLAPPED structure must
contain a handle to a manual-reset (not an auto-reset) event object. The system sets the state of the event
object to not-signaled when a call to the I/O function returns before the operation has been completed. The
system sets the state of the event object to signaled when the operation has been completed. The thread
uses a wait function to check the current state of the event object or to wait for its state to be signaled.

The ReadFileEx and WriteFileEx functions can be performed only as overlapped operations. The calling
thread specifies a pointer to the FileIOCompletionRoutine function, which is executed when the
overlapped operation is completed. The completion routine is executed only if the calling thread performs
an alertable operation.

For more information about event objects, wait functions, alertable waits, and completion routines, see
Synchronization.

Time-Outs

A handle to a communications resource has an associated set of time-out parameters that affect the
behavior of read and write operations. Time-outs can cause a ReadFile, ReadFileEx, WriteFile, or
WriteFileEx operation to conclude when a time-out interval elapses, even though the specified number of
characters have not been read or written. It is not treated as an error when a time-out occurs during a read
or write operation (that is, the read or write function's return value indicates success). The count of bytes
actually read or written is reported by ReadFile or WriteFile (or by the GetOverlappedResult or
FileIOCompletionRoutine function, if the I/O was performed as an overlapped operation).

When an application opens a communications resource, the system sets the resource's time-out values to
the values in effect when the resource was last used. If the communications resource has never been
opened, the system sets the time-out values to some default value. In either case, an application should
always determine the current time-out values after opening the resource, and then explicitly set them to
meet its requirements. To determine the current time-out values of a communications resource, use the
GetCommTimeouts function. To change the time-out values, use the SetCommTimeouts function.

Two types of time-outs are enabled by the time-out parameters. An interval time-out occurs when the time
between the receipt of any two characters exceeds a specified number of milliseconds. Timing starts when
the first character is received and is restarted when each new character is received. A total time-out occurs
when the total amount of time consumed by a read operation exceeds a calculated number of milliseconds.
Timing starts immediately when the I/O operation begins. Write operations support only total time-outs.
Read operations support both interval and total time-outs, which can be used separately or combined.

About Communications Page 5 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

The time, in milliseconds, of the total time-out period for a read or write operation is calculated by using
the multiplier and constant values from the COMMTIMEOUTS structure specified in the
GetCommTimeouts or SetCommTimeouts function. The following formula is used:

Timeout = (MULTIPLIER * number_of_bytes) + CONSTANT

Using both a multiplier and a constant enables the total time-out period to vary, depending on the amount
of data being requested. An application can use only the constant by setting the multiplier to zero, or use
only the multiplier by setting the constant to zero. If both the constant and multiplier are zero, total time-
out is not used.

If all read time-out parameters are zero, read time-outs are not used, and a read operation is not complete
until the requested number of bytes have been read or an error occurs. Similarly, if all write time-out
parameters are zero, a write operation is not completed until the requested number of bytes have been
written or an error occurs.

If the read interval time-out parameter is the MAXDWORD value and both read total time-out parameters
are zero, a read operation is completed immediately after reading whatever characters are available in the
input buffer, even if it is empty.

Interval timing forces a read operation to return when there is a lull in reception. A process using interval
time-outs can set a fairly short interval parameter, so it can respond quickly to small, isolated bursts of one
or a few characters, yet it can still collect large buffers of characters with a single call when data is received
in a steady stream.

Time-outs for a write operation can be useful when transmission is blocked by some kind of flow control or
when the SetCommBreak function has been called to suspend character transmission.

The following table summarizes the behavior of read operations based on the values specified for total and
interval time-outs.

Note, however, that timing is relative to the system controlling the physical device. For a remote device
such as a modem, the timing is relative to the server system to which the modem is attached. Any network
propagation delay is not factored in. For example, a client application might specify a total time-out that
computes to be 500 milliseconds. When 500 milliseconds have elapsed at the server, a time-out error is
returned to the client. If there is a 50 milliseconds network propagation delay, the client will not be notified
of the time-out until approximately 50 milliseconds after the time-out actually occurred.

The time-out parameters affect the behavior of overlapped read and write operations on a communications
device. With overlapped I/O, the ReadFile, WriteFile, ReadFileEx, or WriteFileEx function can return
before the operation has been completed. The time-out parameters can determine when the operation has
been completed.

Total Interval Behavior
0 0 Returns when the buffer is completely filled. Time-outs are not used.
T 0 Returns when the buffer is completely filled or when T milliseconds have

elapsed since the beginning of the operation.
0 Y Returns when the buffer is completely filled or when Y milliseconds have

elapsed between the receipt of any two characters. Timing does not begin
until the first character is received.

T Y Returns when the buffer is completely filled or when either type of time-out
occurs.

About Communications Page 6 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

Communications Errors

There are other circumstances where a read or write operation can be completed with fewer than the
requested number of characters, even though a time-out has not occurred. Following are some examples:

Some drivers support the use of special characters, which complete a read operation immediately
with only the characters that have been read up to the point when they are received.
The PurgeComm function can be called to prematurely terminate pending read or write operations.
This function can also delete the contents of the output or input buffers, or both.
If a communications error occurs during a read or write operation, all I/O operations on the
communications resource are terminated. Break conditions, parity errors, or framing errors are
examples of such errors. When an error occurs, the process must call the ClearCommError
function to clear the error flag before it can begin additional I/O operations. ClearCommError
reports the specific error that occurred and the current status of the device.

Communications Events

A process can monitor a set of events that occur in a communications resource. For example, an
application can use event monitoring to determine when the CTS (clear-to-send) and DSR (data-set-ready)
signals change state.

A process can monitor events on a given communications resource by using the SetCommMask function
to create an event mask. To determine the current event mask for a communications resource, a process
can use the GetCommMask function. The following values specify events that can be monitored.

After a set of events is specified, a process uses the WaitCommEvent function to wait for one of the
events to occur. WaitCommEvent can be used synchronously or as an overlapped operation. For
additional information about executing a function as an overlapped operation, see Synchronization.

When one of the events specified in the event mask occurs, the process completes the wait operation and
sets an event mask variable to indicate the type of event detected. If the SetCommMask is called for a
communications resource while a wait is pending for that resource, WaitCommEvent returns an error.

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are CE_FRAME,

CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RXCHAR A character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The event

character is specified in the device's DCB structure, which is applied to a serial
port by using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.

About Communications Page 7 of 7

file://C:\WINDOWS\TEMP\~hh7608.htm 99.09.08

The WaitCommEvent function detects events that have occurred since the last call to SetCommMask or
WaitCommEvent. For example, if you specify the EV_RXCHAR event as a wait-satisfying event, a call
to WaitCommEvent will be satisfied if there are characters in the driver's input buffer that have arrived
since the last call to WaitCommEvent or SetCommMask. Thus, given the following pseudo-code, any
characters received between T1 and T2 will satisfy the next call to WaitCommEvent.

while (we_care)
{
 WaitCommEvent(args)

T1: // Read bytes
 // Process bytes

T2:
}

When monitoring an event that occurs when a signal (CTS, DSR, and so on) changes state,
WaitCommEvent reports the change, but not the current state. To query the current state of the CTS
(clear-to-send), DSR (data-set-ready), RLSD (receive-line-signal-detect), and ring indicator signals, a
process can use the GetCommModemStatus function.

Extended Functions

Some communications functions can be called for a device by using the EscapeCommFunction function.
This function sends a code to direct the device to execute an extended function. For example, an
application can suspend character transmission with the SETBREAK code and resume transmission with
the CLRBREAK code. These particular operations can also be started by calling the SetCommBreak and
ClearCommBreak functions. EscapeCommFunction can also be used to implement manual modem
control. For example, the CLRDTR and SETDTR codes can be used to implement manual DTR (data-
terminal-ready) flow control. Note, however, that an error occurs if a process uses EscapeCommFunction
to manipulate the DTR line when the device has been configured to enable DTR handshaking, or the RTS
(request-to-send) line if RTS handshaking is enabled.

The DeviceIoControl function enables a process to send an extended function code directly to a specified
device driver, causing the device to perform a given operation. DeviceIoControl gives a device associated
with a communications resource capabilities not supported by the standard serial communications
functions. It enables an application to configure a device using parameters unique to that device as well as
to call any device-specific functions.

