
Using the Communications Functions Page 1 of 2

file://C:\WINDOWS\TEMP\~hhD1A5.htm 99.09.08

Using the Communications Functions
Configuring a communications resource
Monitoring communications events

Configuring a Communications Resource

The following example opens a handle to COM1 and fills in a DCB structure with the current
configuration. The DCB structure is then modified and used to reconfigure the device.

DCB dcb;
HANDLE hCom;
DWORD dwError;
BOOL fSuccess;

hCom = CreateFile("COM1",
 GENERIC_READ | GENERIC_WRITE,
 0, // comm devices must be opened w/exclusive-access
 NULL, // no security attributes
 OPEN_EXISTING, // comm devices must use OPEN_EXISTING
 0, // not overlapped I/O
 NULL // hTemplate must be NULL for comm devices
);

if (hCom == INVALID_HANDLE_VALUE)
{
 dwError = GetLastError();

 // handle error
}

// Omit the call to SetupComm to use the default queue sizes.
// Get the current configuration.

fSuccess = GetCommState(hCom, &dcb);

if (!fSuccess)
{
 // Handle the error.
}

// Fill in the DCB: baud=9600, 8 data bits, no parity, 1 stop bit.

dcb.BaudRate = 9600;
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;

fSuccess = SetCommState(hCom, &dcb);

if (!fSuccess)
{
 // Handle the error.
}

Monitoring Communications Events

The following example code opens the serial port for overlapped I/O, creates an event mask to monitor

Using the Communications Functions Page 2 of 2

file://C:\WINDOWS\TEMP\~hhD1A5.htm 99.09.08

CTS and DSR signals, and then waits for an event to occur. The WaitCommEvent function should be
executed as an overlapped operation so the other threads of the process cannot perform I/O operations
during the wait.

HANDLE hCom;
OVERLAPPED o;
BOOL fSuccess;
DWORD dwEvtMask;

hCom = CreateFile("COM1",
 GENERIC_READ | GENERIC_WRITE,
 0, // exclusive access
 NULL, // no security attributes
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL
);

if (hCom == INVALID_HANDLE_VALUE)
{
 // Handle the error.
}

// Set the event mask.

fSuccess = SetCommMask(hCom, EV_CTS | EV_DSR);

if (!fSuccess)
{
 // Handle the error.
}

// Create an event object for use in WaitCommEvent.

o.hEvent = CreateEvent(
 NULL, // no security attributes
 FALSE, // auto reset event
 FALSE, // not signaled
 NULL // no name
);

assert(o.hEvent);

if (WaitCommEvent(hCom, &dwEvtMask, &o))
{
 if (dwEvtMask & EV_DSR)
 {
 // To do.
 }

 if (dwEvtMask & EV_CTS)
 {
 // To do.
 }
}

