
Communication Reference Page 1 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Communication Reference
The following elements are used with communications devices.

Communication Functions
Communication Structures

Communication Functions

The following functions are used with communications devices.

BuildCommDCB
The BuildCommDCB function fills a specified DCB structure with values specified in a device-control
string. The device-control string uses the syntax of the mode command.

BOOL BuildCommDCB(
 LPCTSTR lpDef, // pointer to device-control string

BuildCommDCB
BuildCommDCBAndTimeouts
ClearCommBreak
ClearCommError
CommConfigDialog
EscapeCommFunction
GetCommConfig
GetCommMask
GetCommModemStatus
GetCommProperties
GetCommState
GetCommTimeouts
GetDefaultCommConfig
PurgeComm
SetCommBreak
SetCommConfig
SetCommMask
SetCommState
SetCommTimeouts
SetDefaultCommConfig
SetupComm
TransmitCommChar
WaitCommEvent

Communication Reference Page 2 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

 LPDCB lpDCB // pointer to device-control block
);

Parameters

lpDef
Pointer to a null-terminated string that specifies device-control information. The string must have the
same form as the mode command's command-line arguments. For example, the following string
specifies a baud rate of 1200, no parity, 8 data bits, and 1 stop bit:

baud=1200 parity=N data=8 stop=1

The device name is ignored if it is included in the string, but it must specify a valid device, as follows:

COM1: baud=1200 parity=N data=8 stop=1

For further information on mode command syntax, refer to the end-user documentation for your
operating system.

lpDCB
Pointer to a DCB structure to be filled in.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The BuildCommDCB function adjusts only those members of the DCB structure that are specifically
affected by the lpDef parameter, with the following exceptions:

If the specified baud rate is 110, the function sets the stop bits to 2 to remain compatible with the
system's mode command.
By default, BuildCommDCB disables XON/XOFF and hardware flow control. To enable flow
control, you must explicitly set the appropriate members of the DCB structure.

The BuildCommDCB function only fills in the members of the DCB structure. To apply these settings to
a serial port, use the SetCommState function.

There are older and newer forms of the mode command syntax. The BuildCommDCB function supports
both forms. However, you cannot mix the two forms together.

The newer form of the mode command syntax lets you explicitly set the values of the flow control
members of the DCB structure. If you use an older form of the mode syntax, the BuildCommDCB
function sets the flow control members of the DCB structure, as follows:

For a string such as 96,n,8,1 or any other older-form mode string that doesn't end with an x or a p:

fInX, fOutX,fOutXDsrFlow,and fOutXCtsFlow are all set to FALSE

fDtrControl is set to DTR_CONTROL_ENABLE

fRtsControl is set to RTS_CONTROL_ENABLE
For a string such as 96,n,8,1,x or any other older-form mode string that finishes with an x:

Communication Reference Page 3 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

fInX, fOutX are both set to TRUE

fOutXDsrFlow,fOutXCtsFlow are both set to FALSE.

fDtrControl is set to DTR_CONTROL_ENABLE

fRtsControl is set to RTS_CONTROL_ENABLE
For a string such as 96,n,8,1,p or any other older-form mode string that finishes with a p:

fInX, fOutX are both set to FALSE

fOutXDsrFlow,fOutXCtsFlow are both set to TRUE.

fDtrControl is set to DTR_CONTROL_HANDSHAKE

fRtsControl is set to RTS_CONTROL_HANDSHAKE

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Communications Overview, Communication Functions, DCB, SetCommState

BuildCommDCBAndTimeouts
The BuildCommDCBAndTimeouts function translates a device-definition string into appropriate device-
control block codes and then places these codes into a device control block. The function can also set up
time-out values, including the possibility of no time-outs, for a device; the function's behavior in this regard
varies based on the contents of the device-definition string.

BOOL BuildCommDCBAndTimeouts(
 LPCTSTR lpDef, // pointer to device-control string
 LPDCB lpDCB, // pointer to device-control block
 LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm time-out structure
);

Parameters

lpDef
Pointer to a null-terminated string that specifies device-control information for the device. The
function takes this string, parses it, and then sets appropriate values in the DCB structure pointed to
by lpDCB.

lpDCB
Pointer to a DCB structure that the function fills with information from the device-control
information string pointed to by lpDef. This DCB structure defines the control settings for a

Communication Reference Page 4 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

communications device.
lpCommTimeouts

Pointer to a COMMTIMEOUTS structure that the function can use to set device time-out values.

The BuildCommDcbAndTimeouts function modifies its time-out setting behavior based on the
presence or absence of a "TO=xxx" substring in the string specified by lpDef:

If that string contains the substring "TO=ON", the function sets up total read and write time-
out values for the device based on the time-out structure pointed to by lpCommTimeouts.
If that string contains the substring "TO=OFF", the function sets up the device with no time-
outs.
If that string contains neither of the aforementioned "TO=xxx" substrings, the function ignores
the time-out structure pointed to by lpCommTimeouts. The time-out structure will not be
accessed.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Communications Overview, Communication Functions, BuildCommDCB, COMMTIMEOUTS, DCB,
GetCommTimeouts, SetCommTimeouts

ClearCommBreak
The ClearCommBreak function restores character transmission for a specified communications device and
places the transmission line in a nonbreak state.

BOOL ClearCommBreak(
 HANDLE hFile // handle to communications device
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Communication Reference Page 5 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Remarks

A communications device is placed in a break state by the SetCommBreak or EscapeCommFunction
function. Character transmission is then suspended until the break state is cleared by calling
ClearCommBreak.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, ClearCommError, CreateFile,
EscapeCommFunction, SetCommBreak

ClearCommError
The ClearCommError function retrieves information about a communications error and reports the
current status of a communications device. The function is called when a communications error occurs, and
it clears the device's error flag to enable additional input and output (I/O) operations.

BOOL ClearCommError(
 HANDLE hFile, // handle to communications device
 LPDWORD lpErrors, // pointer to variable to receive error codes
 LPCOMSTAT lpStat // pointer to buffer for communications status
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpErrors
Pointer to a 32-bit variable to be filled with a mask indicating the type of error. This parameter can
be one or more of the following error codes:
Value Meaning
CE_BREAK The hardware detected a break condition.
CE_DNS Windows 95 and Windows 98: A parallel device is not selected.
CE_FRAME The hardware detected a framing error.
CE_IOE An I/O error occurred during communications with the device.
CE_MODE The requested mode is not supported, or the hFile parameter is invalid.

If this value is specified, it is the only valid error.
CE_OOP Windows 95 and Windows 98: A parallel device signaled that it is

out of paper.
CE_OVERRUN A character-buffer overrun has occurred. The next character is lost.

Communication Reference Page 6 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

lpStat
Pointer to a COMSTAT structure in which the device's status information is returned. If lpStat is
NULL, no status information is returned.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

If a communications port has been set up with a TRUE value for the fAbortOnError member of the setup
DCB structure, the communications software will terminate all read and write operations on the
communications port when a communications error occurs. No new read or write operations will be
accepted until the application acknowledges the communications error by calling the ClearCommError
function.

The ClearCommError function fills the status buffer pointed to by the lpStat parameter with the current
status of the communications device specified by the hFile parameter.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, ClearCommBreak, COMSTAT, CreateFile,
DCB

CommConfigDialog
The CommConfigDialog function displays a driver-supplied configuration dialog box.

BOOL CommConfigDialog(
 LPTSTR lpszName, // pointer to device name string
 HWND hWnd, // handle to window
 LPCOMMCONFIG lpCC // pointer to comm configuration structure
);

CE_PTO Windows 95 and Windows 98: A time-out occurred on a parallel
device.

CE_RXOVER An input buffer overflow has occurred. There is either no room in the
input buffer, or a character was received after the end-of-file (EOF)
character.

CE_RXPARITY The hardware detected a parity error.
CE_TXFULL The application tried to transmit a character, but the output buffer was

full.

Communication Reference Page 7 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Parameters

lpszName
Pointer to a null-terminated string specifying the name of the device for which a dialog box should be
displayed.

hWnd
Handle to the window that owns the dialog box. This parameter can be any valid window handle, or
it should be NULL if the dialog box is to have no owner.

lpCC
Pointer to a COMMCONFIG structure. This structure contains initial settings for the dialog box
before the call, and changed values after the call.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The CommConfigDialog function requires a dynamic-link library (DLL) provided by the communications
hardware vendor.

QuickInfo

 Windows NT: Requires version 3.51 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Communications Overview, Communication Functions, COMMCONFIG

EscapeCommFunction
The EscapeCommFunction function directs a specified communications device to perform an extended
function.

BOOL EscapeCommFunction(
 HANDLE hFile, // handle to communications device
 DWORD dwFunc // extended function to perform
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

dwFunc
Specifies the code of the extended function to perform. This parameter can be one of the following

Communication Reference Page 8 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

values:

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Windows CE: Windows CE supports the following additional flags for the dwFunc parameter:

SETIR
Sets the serial port in IR mode.

CLRIR
Sets port into normal serial mode.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, ClearCommBreak, CreateFile, SetCommBreak

GetCommConfig
The GetCommConfig function gets the current configuration of a communications device.

BOOL GetCommConfig(

Value Meaning
CLRDTR Clears the DTR (data-terminal-ready) signal.
CLRRTS Clears the RTS (request-to-send) signal.
SETDTR Sends the DTR (data-terminal-ready) signal.
SETRTS Sends the RTS (request-to-send) signal.
SETXOFF Causes transmission to act as if an XOFF character has been received.
SETXON Causes transmission to act as if an XON character has been received.
SETBREAK Suspends character transmission and places the transmission line in a break

state until the ClearCommBreak function is called (or
EscapeCommFunction is called with the CLRBREAK extended function
code). The SETBREAK extended function code is identical to the
SetCommBreak function. Note that this extended function does not flush
data that has not been transmitted.

CLRBREAK Restores character transmission and places the transmission line in a
nonbreak state. The CLRBREAK extended function code is identical to
the ClearCommBreak function.

Communication Reference Page 9 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

 HANDLE hCommDev, // handle to communications service
 LPCOMMCONFIG lpCC, // pointer to comm configuration structure
 LPDWORD lpdwSize // pointer to size of buffer
);

Parameters

hCommDev
Handle to the open communications device.

lpCC
Pointer to the buffer that receives the COMMCONFIG structure.

lpdwSize
Pointer to a 32-bit variable that specifies the size, in bytes, of the buffer pointed to by lpCC. When
the function returns, the variable contains the number of bytes copied if the function succeeds, or the
number of bytes required if the buffer was too small.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the GetLastError
function.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, SetCommConfig, COMMCONFIG

GetCommMask
The GetCommMask function retrieves the value of the event mask for a specified communications device.

BOOL GetCommMask(
 HANDLE hFile, // handle to communications device
 LPDWORD lpEvtMask // pointer to variable to get event mask
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpEvtMask
Pointer to the 32-bit variable to be filled with a mask of events that are currently enabled. This
parameter can be one or more of the following values:

Communication Reference Page 10 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GetCommMask function uses a 32-bit mask variable to indicate the set of events that can be
monitored for a particular communications resource. A handle to the communications resource can be
specified in a call to the WaitCommEvent function, which waits for one of the events to occur. To modify
the event mask of a communications resource, use the SetCommMask function.

Windows CE: Windows CE does not support the following values for the lpEvtMask parameter:

EV_EVENT1

EV_EVENT2

EV_RX80FULL

EV_PERR

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, DCB, SetCommMask,

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are CE_FRAME,

CE_OVERRUN, and CE_RXPARITY.
EV_EVENT1 An event of the first provider-specific type occured.
EV_EVENT2 An event of the second provider-specific type occured.
EV_PERR A printer error occured.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RX80FULL The receive buffer is 80 percent full.
EV_RXCHAR A character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The

event character is specified in the device's DCB structure, which is
applied to a serial port by using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.

Communication Reference Page 11 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

WaitCommEvent,

GetCommModemStatus
The GetCommModemStatus function retrieves modem control-register values.

BOOL GetCommModemStatus(
 HANDLE hFile, // handle to communications device
 LPDWORD lpModemStat // pointer to control-register values
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpModemStat
Pointer to a 32-bit variable that specifies the current state of the modem control-register values. This
parameter can be a combination of the following values:

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GetCommModemStatus function is useful when you are using the WaitCommEvent function to
monitor the CTS, RLSD, DSR, or ring indicator signals. To detect when these signals change state, use
WaitCommEvent and then use GetCommModemStatus to determine the state after a change occurs.

The function fails if the hardware does not support the control-register values.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, WaitCommEvent

Value Meaning
MS_CTS_ON The CTS (clear-to-send) signal is on.
MS_DSR_ON The DSR (data-set-ready) signal is on.
MS_RING_ON The ring indicator signal is on.
MS_RLSD_ON The RLSD (receive-line-signal-detect) signal is on.

Communication Reference Page 12 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

GetCommProperties
The GetCommProperties function fills a buffer with information about the communications properties for
a specified communications device.

BOOL GetCommProperties(
 HANDLE hFile, // handle to comm device
 LPCOMMPROP lpCommProp // pointer to comm properties structure
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpCommProp
Pointer to a COMMPROP structure in which the communications properties information is
returned. This information can be used in subsequent calls to the SetCommState,
SetCommTimeouts, or SetupComm function to configure the communications device.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GetCommProperties function returns information from a device driver about the configuration
settings that are supported by the driver.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, COMMPROP, CreateFile, SetCommState,
SetCommTimeouts, SetupComm

GetCommState
The GetCommState function fills in a device-control block (a DCB structure) with the current control
settings for a specified communications device.

BOOL GetCommState(
 HANDLE hFile, // handle to communications device
 LPDCB lpDCB // pointer to device-control block structure

Communication Reference Page 13 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpDCB
Pointer to the DCB structure in which the control settings information is returned.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, DCB, SetCommState

GetCommTimeouts
The GetCommTimeouts function retrieves the time-out parameters for all read and write operations on a
specified communications device.

BOOL GetCommTimeouts(
 HANDLE hFile, // handle to comm device
 LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm time-outs structure
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpCommTimeouts
Pointer to a COMMTIMEOUTS structure in which the time-out information is returned.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Communication Reference Page 14 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

For more information about time-out values for communications devices, see the SetCommTimeouts
function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, COMMTIMEOUTS,
SetCommTimeouts

GetDefaultCommConfig
The GetDefaultCommConfig function gets the default configuration for a communications device.

BOOL GetDefaultCommConfig(
 LPCSTR lpszName, // pointer to device name string
 LPCOMMCONFIG lpCC, // pointer to buffer that receives structure
 LPDWORD lpdwSize // pointer to size of buffer
);

Parameters

lpszName
Pointer to a null-terminated string specifying the name of the device.

lpCC
Pointer to the buffer that receives the COMMCONFIG structure.

lpdwSize
Pointer to a 32-bit variable that specifies the size, in bytes, of the buffer pointed to by lpCC. Upon
return, the variable contains the number of bytes copied if the function succeeds, or the number of
bytes required if the buffer was too small.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the GetLastError
function.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

Communication Reference Page 15 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

See Also

Communications Overview, Communication Functions, SetDefaultCommConfig, COMMCONFIG

PurgeComm
The PurgeComm function can discard all characters from the output or input buffer of a specified
communications resource. It can also terminate pending read or write operations on the resource.

BOOL PurgeComm(
 HANDLE hFile, // handle to communications resource
 DWORD dwFlags // action to perform
);

Parameters

hFile
Handle to the communications resource. The CreateFile function returns this handle.

dwFlags
Specifies the action to take. This parameter can be a combination of the following values:

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

If a thread uses PurgeComm to flush an output buffer, the deleted characters are not transmitted. To
empty the output buffer while ensuring that the contents are transmitted, call the FlushFileBuffers function
(a synchronous operation). Note, however, that FlushFileBuffers is subject to flow control but not to
write time-outs, and it will not return until all pending write operations have been transmitted.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Value Meaning
PURGE_TXABORT Terminates all outstanding overlapped write operations and returns

immediately, even if the write operations have not been completed.
PURGE_RXABORT Terminates all outstanding overlapped read operations and returns

immediately, even if the read operations have not been completed.
PURGE_TXCLEAR Clears the output buffer (if the device driver has one).
PURGE_RXCLEAR Clears the input buffer (if the device driver has one).

Communication Reference Page 16 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Communications Overview, Communication Functions, CreateFile

SetCommBreak
The SetCommBreak function suspends character transmission for a specified communications device and
places the transmission line in a break state until the ClearCommBreak function is called.

BOOL SetCommBreak(
 HANDLE hFile // handle to communications device
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, ClearCommBreak, CreateFile

SetCommConfig
The SetCommConfig function sets the current configuration of a communications device.

BOOL SetCommConfig(
 HANDLE hCommDev, // handle to comm device
 LPCOMMCONFIG lpCC, // pointer to comm configuration services
 DWORD dwSize // size of structure
);

Parameters

hCommDev
Handle to the open communications device.

lpCC

Communication Reference Page 17 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Pointer to a COMMCONFIG structure.
dwSize

Specifies the size, in bytes, of the structure pointed to by lpCC.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, GetCommConfig, COMMCONFIG

SetCommMask
The SetCommMask function specifies a set of events to be monitored for a communications device.

BOOL SetCommMask(
 HANDLE hFile, // handle to communications device
 DWORD dwEvtMask // mask that identifies enabled events
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

dwEvtMask
Specifies the events to be enabled. A value of zero disables all events. This parameter can be a
combination of the following values:
Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are CE_FRAME,

CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RXCHAR A character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The

event character is specified in the device's DCB structure, which is
applied to a serial port by using the SetCommState function.

Communication Reference Page 18 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The SetCommMask function specifies the set of events that can be monitored for a particular
communications resource. A handle to the communications resource can be specified in a call to the
WaitCommEvent function, which waits for one of the events to occur. To get the current event mask of a
communications resource, use the GetCommMask function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, DCB, GetCommMask,
SetCommState, WaitCommEvent

SetCommState
The SetCommState function configures a communications device according to the specifications in a
device-control block (a DCB structure). The function reinitializes all hardware and control settings, but it
does not empty output or input queues.

BOOL SetCommState(
 HANDLE hFile, // handle to communications device
 LPDCB lpDCB // pointer to device-control block structure
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpDCB
Pointer to a DCB structure containing the configuration information for the specified
communications device.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EV_TXEMPTY The last character in the output buffer was sent.

Communication Reference Page 19 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Remarks

The SetCommState function uses a DCB structure to specify the desired configuration. The
GetCommState function returns the current configuration.

To set only a few members of the DCB structure, you should modify a DCB structure that has been filled
in by a call to GetCommState. This ensures that the other members of the DCB structure have
appropriate values.

The SetCommState function fails if the XonChar member of the DCB structure is equal to the XoffChar
member.

When SetCommState is used to configure the 8250, the following restrictions apply to the values for the
DCB structure's ByteSize and StopBits members:

The number of data bits must be 5 to 8 bits.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, BuildCommDCB, CreateFile, DCB,
GetCommState

SetCommTimeouts
The SetCommTimeouts function sets the time-out parameters for all read and write operations on a
specified communications device.

BOOL SetCommTimeouts(
 HANDLE hFile, // handle to comm device
 LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm time-out structure
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpCommTimeouts
Pointer to a COMMTIMEOUTS structure that contains the new time-out values.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Communication Reference Page 20 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, COMMTIMEOUTS, GetCommTimeouts,
ReadFile, ReadFileEx, WriteFile, WriteFileEx

SetDefaultCommConfig
The SetDefaultCommConfig function sets the default configuration for a communications device.

BOOL SetDefaultCommConfig(
 LPCSTR lpszName, // pointer to device name string
 LPCOMMCONFIG lpCC, // pointer to structure
 DWORD dwSize // size of structure
);

Parameters

lpszName
Pointer to a null-terminated string specifying the name of the device.

lpCC
Pointer to a COMMCONFIG structure.

dwSize
Specifies the size, in bytes, of the structure pointed to by lpCC.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Communications Overview, Communication Functions, GetDefaultCommConfig, COMMCONFIG

Communication Reference Page 21 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

SetupComm
The SetupComm function initializes the communications parameters for a specified communications
device.

BOOL SetupComm(
 HANDLE hFile, // handle to communications device
 DWORD dwInQueue, // size of input buffer
 DWORD dwOutQueue // size of output buffer
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

dwInQueue
Specifies the recommended size, in bytes, of the device's internal input buffer.

dwOutQueue
Specifies the recommended size, in bytes, of the device's internal output buffer.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

After a process uses the CreateFile function to open a handle to a communications device, it can call
SetupComm to set the communications parameters for the device. If it does not set them, the device uses
the default parameters when the first call to another communications function occurs.

The dwInQueue and dwOutQueue parameters specify the recommended sizes for the internal buffers used
by the driver for the specified device. For example, YMODEM protocol packets are slightly larger than
1024 bytes. Therefore, a recommended buffer size might be 1200 bytes for YMODEM communications.
For Ethernet-based communications, a recommended buffer size might be 1600 bytes, which is slightly
larger than a single Ethernet frame.

The device driver receives the recommended buffer sizes, but is free to use any input and output (I/O)
buffering scheme, as long as it provides reasonable performance and data is not lost due to overrun (except
under extreme circumstances). For example, the function can succeed even though the driver does not
allocate a buffer, as long as some other portion of the system provides equivalent functionality.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, SetCommState

Communication Reference Page 22 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

TransmitCommChar
The TransmitCommChar function transmits a specified character ahead of any pending data in the output
buffer of the specified communications device.

BOOL TransmitCommChar(
 HANDLE hFile, // handle to communications device
 char cChar // character to transmit
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

cChar
Specifies the character to be transmitted.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The TransmitCommChar function is useful for sending an interrupt character (such as a ctrl+c) to a host
system.

If the device is not transmitting, TransmitCommChar cannot be called repeatedly. Once
TransmitCommChar places a character in the output buffer, the character must be transmitted before the
function can be called again. If the previous character has not yet been sent, TransmitCommChar returns
an error.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, WaitCommEvent

WaitCommEvent
The WaitCommEvent function waits for an event to occur for a specified communications device. The set
of events that are monitored by this function is contained in the event mask associated with the device

Communication Reference Page 23 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

handle.

BOOL WaitCommEvent(
 HANDLE hFile, // handle to communications device
 LPDWORD lpEvtMask, // pointer to variable to receive event
 LPOVERLAPPED lpOverlapped, // pointer to overlapped structure
);

Parameters

hFile
Handle to the communications device. The CreateFile function returns this handle.

lpEvtMask
Pointer to a 32-bit variable that receives a mask indicating the type of event that occurred. If an error
occurs, the value is zero; otherwise, it is one of the following values:

lpOverlapped
Pointer to an OVERLAPPED structure. This structure is required if hFile was opened with
FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be
NULL. It must point to a valid OVERLAPPED structure. If hFile was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report that
the operation is complete.

If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL,
WaitCommEvent is performed as an overlapped operation. In this case, the OVERLAPPED
structure must contain a handle to a manual-reset event object (created by using the CreateEvent
function).

If hFile handle was not opened with FILE_FLAG_OVERLAPPED, WaitCommEvent does not
return until one of the specified events or an error occurs.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are CE_FRAME,

CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RXCHAR A character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The

event character is specified in the device's DCB structure, which is
applied to a serial port by using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.

Communication Reference Page 24 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

The WaitCommEvent function monitors a set of events for a specified communications resource. To set
and query the current event mask of a communications resource, use the SetCommMask and
GetCommMask functions.

If the overlapped operation cannot be completed immediately, the function returns FALSE and the
GetLastError function returns ERROR_IO_PENDING, indicating that the operation is executing in the
background. When this happens, the system sets the hEvent member of the OVERLAPPED structure to
the not-signaled state before WaitCommEvent returns, and then it sets it to the signaled state when one of
the specified events or an error occurs. The calling process can use one of the wait functions to determine
the event object's state and then use the GetOverlappedResult function to determine the results of the
WaitCommEvent operation. GetOverlappedResult reports the success or failure of the operation, and
the variable pointed to by the lpEvtMask parameter is set to indicate the event that occurred.

If a process attempts to change the device handle's event mask by using the SetCommMask function while
an overlapped WaitCommEvent operation is in progress, WaitCommEvent returns immediately. The
variable pointed to by the lpEvtMask parameter is set to zero.

Windows CE: Windows CE supports an additional flag for the lpEvtMask parameter:

EV_POWER
Power event, which is generated whenever the device is powered on.

The WaitCommEvent function cannot be performed as an overlapped operation. The lpOverlapped
parameter is not supported and is ignored. It should be set to NULL before calling WaitCommEvent.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.
 Import Library: Use kernel32.lib.

See Also

Communications Overview, Communication Functions, CreateFile, DCB, GetCommMask,
GetOverlappedResult, OVERLAPPED, SetCommMask, SetCommState

Communication Structures

The following structures are used with communications devices.

COMMCONFIG
COMMPROP
COMMTIMEOUTS
COMSTAT
DCB
MODEMDEVCAPS
MODEMSETTINGS

Communication Reference Page 25 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

COMMCONFIG
The COMMCONFIG structure contains information about the configuration state of a communications
device.

typedef struct _COMM_CONFIG {
 DWORD dwSize; // size of structure
 WORD wVersion; // version of structure
 WORD wReserved; // reserved
 DCB dcb; // device-control block
 DWORD dwProviderSubType; // type of provider-specific data
 DWORD dwProviderOffset; // offset of provider-specific data
 DWORD dwProviderSize; // size of provider-specific data
 WCHAR wcProviderData[1]; // provider-specific data
} COMMCONFIG, *LPCOMMCONFIG;

Members

dwSize
Specifies the size, in bytes, of the COMMCONFIG structure.

wVersion
Specifies the version number of the COMMCONFIG structure. This parameter can be 1. The
version of the provider-specific structure should be included in the wcProviderData member.

wReserved
Reserved; do not use.

dcb
Specifies a device-control block (DCB) structure for RS-232 serial devices. A DCB structure is
always present regardless of the port driver subtype specified in the device's COMMPROP
structure.

dwProviderSubType
Identifies the type of communications provider, and thus the format of the provider-specific data. For
a list of communications provider types, see the description of the COMMPROP structure.

dwProviderOffset
Specifies the offset, in bytes, of the provider-specific data relative to the beginning of the structure.
This member is zero if there is no provider-specific data.

dwProviderSize
Specifies the size, in bytes, of the provider-specific data.

wcProviderData
Contains the provider-specific data, if any. This member may be of any size or may be omitted.
Because the COMMCONFIG structure may be expanded in the future, applications should use the
dwProviderOffset member to determine the location of this member.

Remarks

If the provider subtype is PST_RS232 or PST_PARALLELPORT the wcProviderData member is
omitted. If the provider subtype is PST_MODEM, the wcProviderData member contains a
MODEMSETTINGS structure.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.

Communication Reference Page 26 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

See Also

Communications Overview, Communication Structures, DCB, COMMPROP, GetCommProperties,
MODEMSETTINGS

COMMPROP
The COMMPROP structure is used by the GetCommProperties function to return information about a
given communications driver.

typedef struct _COMMPROP {
 WORD wPacketLength; // packet size, in bytes
 WORD wPacketVersion; // packet version
 DWORD dwServiceMask; // services implemented
 DWORD dwReserved1; // reserved
 DWORD dwMaxTxQueue; // max Tx bufsize, in bytes
 DWORD dwMaxRxQueue; // max Rx bufsize, in bytes
 DWORD dwMaxBaud; // max baud rate, in bps
 DWORD dwProvSubType; // specific provider type
 DWORD dwProvCapabilities; // capabilities supported
 DWORD dwSettableParams; // changeable parameters
 DWORD dwSettableBaud; // allowable baud rates
 WORD wSettableData; // allowable byte sizes
 WORD wSettableStopParity; // stop bits/parity allowed
 DWORD dwCurrentTxQueue; // Tx buffer size, in bytes
 DWORD dwCurrentRxQueue; // Rx buffer size, in bytes
 DWORD dwProvSpec1; // provider-specific data
 DWORD dwProvSpec2; // provider-specific data
 WCHAR wcProvChar[1]; // provider-specific data
} COMMPROP;

Members

wPacketLength
Specifies the size, in bytes, of the entire data packet, regardless of the amount of data requested.

wPacketVersion
Specifies the version of the structure.

dwServiceMask
Specifies a bitmask indicating which services are implemented by this provider. The
SP_SERIALCOMM value is always specified for communications providers, including modem
providers.

dwReserved1
Reserved; do not use.

dwMaxTxQueue
Specifies the maximum size, in bytes, of the driver's internal output buffer. A value of zero indicates
that no maximum value is imposed by the serial provider.

dwMaxRxQueue
Specifies the maximum size, in bytes, of the driver's internal input buffer. A value of zero indicates
that no maximum value is imposed by the serial provider.

dwMaxBaud
Specifies the maximum allowable baud rate, in bits per second (bps). This member can be one of the
following values:

Communication Reference Page 27 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

dwProvSubType
Specifies the specific communications provider type:

dwProvCapabilities
Specifies a bitmask indicating the capabilities offered by the provider. This member can be one of the
following values:

Value Meaning
BAUD_075 75 bps
BAUD_110 110 bps
BAUD_134_5 134.5 bps
BAUD_150 150 bps
BAUD_300 300 bps
BAUD_600 600 bps
BAUD_1200 1200 bps
BAUD_1800 1800 bps
BAUD_2400 2400 bps
BAUD_4800 4800 bps
BAUD_7200 7200 bps
BAUD_9600 9600 bps
BAUD_14400 14400 bps
BAUD_19200 19200 bps
BAUD_38400 38400 bps
BAUD_56K 56K bps
BAUD_57600 57600 bps
BAUD_115200 115200 bps
BAUD_128K 128K bps
BAUD_USER Programmable baud rates available

Value Meaning
PST_FAX FAX device
PST_LAT LAT protocol
PST_MODEM Modem device
PST_NETWORK_BRIDGE Unspecified network bridge
PST_PARALLELPORT Parallel port
PST_RS232 RS-232 serial port
PST_RS422 RS-422 port
PST_RS423 RS-423 port
PST_RS449 RS-449 port
PST_SCANNER Scanner device
PST_TCPIP_TELNET TCP/IP Telnet® protocol
PST_UNSPECIFIED Unspecified
PST_X25 X.25 standards

Communication Reference Page 28 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

dwSettableParams
Specifies a bitmask indicating the communications parameter that can be changed. This member can
be one of the following values:

dwSettableBaud
Specifies a bitmask indicating the baud rates that can be used. For values, see the dwMaxBaud
member.

wSettableData
Specifies a bitmask indicating the number of data bits that can be set. This member can be one of the
following values:

wSettableStopParity
Specifies a bitmask indicating the stop bit and parity settings that can be selected. This member can
be one of the following values:

Value Meaning
PCF_16BITMODE Special 16-bit mode supported
PCF_DTRDSR DTR (data-terminal-ready)/DSR (data-set-ready) supported
PCF_INTTIMEOUTS Interval time-outs supported
PCF_PARITY_CHECK Parity checking supported
PCF_RLSD RLSD (receive-line-signal-detect) supported
PCF_RTSCTS RTS (request-to-send)/CTS (clear-to-send) supported
PCF_SETXCHAR Settable XON/XOFF supported
PCF_SPECIALCHARS Special character support provided
PCF_TOTALTIMEOUTS Total (elapsed) time-outs supported
PCF_XONXOFF XON/XOFF flow control supported

Value Meaning
SP_BAUD Baud rate
SP_DATABITS Data bits
SP_HANDSHAKING Handshaking (flow control)
SP_PARITY Parity
SP_PARITY_CHECK Parity checking
SP_RLSD RLSD (receive-line-signal-detect)
SP_STOPBITS Stop bits

Value Meaning
DATABITS_5 5 data bits
DATABITS_6 6 data bits
DATABITS_7 7 data bits
DATABITS_8 8 data bits
DATABITS_16 16 data bits
DATABITS_16X Special wide path through serial hardware lines

Communication Reference Page 29 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

dwCurrentTxQueue
Specifies the size, in bytes, of the driver's internal output buffer. A value of zero indicates that the
value is unavailable.

dwCurrentRxQueue
Specifies the size, in bytes, of the driver's internal input buffer. A value of zero indicates that the
value is unavailable.

dwProvSpec1
Specifies provider-specific data. Applications should ignore this member unless they have detailed
information about the format of the data required by the provider.

Set this member to COMMPROP_INITIALIZED before calling the GetCommProperties function
to indicate that the wPacketLength member is already valid.

dwProvSpec2
Specifies provider-specific data. Applications should ignore this member unless they have detailed
information about the format of the data required by the provider.

wcProvChar
Specifies provider-specific data. Applications should ignore this member unless they have detailed
information about the format of the data required by the provider.

Remarks

The contents of the dwProvSpec1, dwProvSpec2, and wcProvChar members depend on the provider
subtype (specified by the dwProvSubType member).

If the provider subtype is PST_MODEM, these members are used as follows:

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.

See Also

Communications Overview, Communication Structures, GetCommProperties

Value Meaning
STOPBITS_10 1 stop bit
STOPBITS_15 1.5 stop bits
STOPBITS_20 2 stop bits
PARITY_NONE No parity
PARITY_ODD Odd parity
PARITY_EVEN Even parity
PARITY_MARK Mark parity
PARITY_SPACE Space parity

Value Meaning
dwProvSpec1 Not used.
dwProvSpec2 Not used.
wcProvChar Contains a MODEMDEVCAPS structure.

Communication Reference Page 30 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

COMMTIMEOUTS
The COMMTIMEOUTS structure is used in the SetCommTimeouts and GetCommTimeouts functions
to set and query the time-out parameters for a communications device. The parameters determine the
behavior of ReadFile, WriteFile, ReadFileEx, and WriteFileEx operations on the device.

typedef struct _COMMTIMEOUTS {
 DWORD ReadIntervalTimeout;
 DWORD ReadTotalTimeoutMultiplier;
 DWORD ReadTotalTimeoutConstant;
 DWORD WriteTotalTimeoutMultiplier;
 DWORD WriteTotalTimeoutConstant;
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

Members

ReadIntervalTimeout
Specifies the maximum time, in milliseconds, allowed to elapse between the arrival of two characters
on the communications line. During a ReadFile operation, the time period begins when the first
character is received. If the interval between the arrival of any two characters exceeds this amount,
the ReadFile operation is completed and any buffered data is returned. A value of zero indicates that
interval time-outs are not used.

A value of MAXDWORD, combined with zero values for both the ReadTotalTimeoutConstant
and ReadTotalTimeoutMultiplier members, specifies that the read operation is to return
immediately with the characters that have already been received, even if no characters have been
received.

ReadTotalTimeoutMultiplier
Specifies the multiplier, in milliseconds, used to calculate the total time-out period for read
operations. For each read operation, this value is multiplied by the requested number of bytes to be
read.

ReadTotalTimeoutConstant
Specifies the constant, in milliseconds, used to calculate the total time-out period for read operations.
For each read operation, this value is added to the product of the ReadTotalTimeoutMultiplier
member and the requested number of bytes.

A value of zero for both the ReadTotalTimeoutMultiplier and ReadTotalTimeoutConstant
members indicates that total time-outs are not used for read operations.

WriteTotalTimeoutMultiplier
Specifies the multiplier, in milliseconds, used to calculate the total time-out period for write
operations. For each write operation, this value is multiplied by the number of bytes to be written.

WriteTotalTimeoutConstant
Specifies the constant, in milliseconds, used to calculate the total time-out period for write
operations. For each write operation, this value is added to the product of the
WriteTotalTimeoutMultiplier member and the number of bytes to be written.

A value of zero for both the WriteTotalTimeoutMultiplier and WriteTotalTimeoutConstant
members indicates that total time-outs are not used for write operations.

Remarks

If an application sets ReadIntervalTimeout and ReadTotalTimeoutMultiplier to MAXDWORD and
sets ReadTotalTimeoutConstant to a value greater than zero and less than MAXDWORD, one of the

Communication Reference Page 31 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

following occurs when the ReadFile function is called:

If there are any characters in the input buffer, ReadFile returns immediately with the characters in
the buffer.
If there are no characters in the input buffer, ReadFile waits until a character arrives and then
returns immediately.
If no character arrives within the time specified by ReadTotalTimeoutConstant, ReadFile times
out.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.

See Also

Communications Overview, Communication Structures, GetCommTimeouts, ReadFile, ReadFileEx,
SetCommTimeouts, WriteFile, WriteFileEx

COMSTAT
The COMSTAT structure contains information about a communications device. This structure is filled by
the ClearCommError function.

typedef struct _COMSTAT {
 DWORD fCtsHold : 1; // Tx waiting for CTS signal
 DWORD fDsrHold : 1; // Tx waiting for DSR signal
 DWORD fRlsdHold : 1; // Tx waiting for RLSD signal
 DWORD fXoffHold : 1; // Tx waiting, XOFF char received
 DWORD fXoffSent : 1; // Tx waiting, XOFF char sent
 DWORD fEof : 1; // EOF character sent
 DWORD fTxim : 1; // character waiting for Tx
 DWORD fReserved : 25; // reserved
 DWORD cbInQue; // bytes in input buffer
 DWORD cbOutQue; // bytes in output buffer
} COMSTAT, *LPCOMSTAT;

Members

fCtsHold
Specifies whether transmission is waiting for the CTS (clear-to-send) signal to be sent. If this
member is TRUE, transmission is waiting.

fDsrHold
Specifies whether transmission is waiting for the DSR (data-set-ready) signal to be sent. If this
member is TRUE, transmission is waiting.

fRlsdHold
Specifies whether transmission is waiting for the RLSD (receive-line-signal-detect) signal to be sent.
If this member is TRUE, transmission is waiting.

fXoffHold
Specifies whether transmission is waiting because the XOFF character was received. If this member
is TRUE, transmission is waiting.

fXoffSent
Specifies whether transmission is waiting because the XOFF character was transmitted. If this

Communication Reference Page 32 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

member is TRUE, transmission is waiting. Transmission halts when the XOFF character is
transmitted to a system that takes the next character as XON, regardless of the actual character.

fEof
Specifies whether the end-of-file (EOF) character has been received. If this member is TRUE, the
EOF character has been received.

fTxim
If this member is TRUE, there is a character queued for transmission that has come to the
communications device by way of the TransmitCommChar function. The communications device
transmits such a character ahead of other characters in the device's output buffer.

fReserved
Reserved; do not use.

cbInQue
Specifies the number of bytes received by the serial provider but not yet read by a ReadFile
operation.

cbOutQue
Specifies the number of bytes of user data remaining to be transmitted for all write operations. This
value will be zero for a nonoverlapped write.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.

See Also

Communications Overview, Communication Structures, ClearCommError, ReadFile,
TransmitCommChar

DCB
The DCB structure defines the control setting for a serial communications device.

typedef struct _DCB { // dcb
 DWORD DCBlength; // sizeof(DCB)
 DWORD BaudRate; // current baud rate
 DWORD fBinary: 1; // binary mode, no EOF check
 DWORD fParity: 1; // enable parity checking
 DWORD fOutxCtsFlow:1; // CTS output flow control
 DWORD fOutxDsrFlow:1; // DSR output flow control
 DWORD fDtrControl:2; // DTR flow control type
 DWORD fDsrSensitivity:1; // DSR sensitivity
 DWORD fTXContinueOnXoff:1; // XOFF continues Tx
 DWORD fOutX: 1; // XON/XOFF out flow control
 DWORD fInX: 1; // XON/XOFF in flow control
 DWORD fErrorChar: 1; // enable error replacement
 DWORD fNull: 1; // enable null stripping
 DWORD fRtsControl:2; // RTS flow control
 DWORD fAbortOnError:1; // abort reads/writes on error
 DWORD fDummy2:17; // reserved
 WORD wReserved; // not currently used
 WORD XonLim; // transmit XON threshold
 WORD XoffLim; // transmit XOFF threshold
 BYTE ByteSize; // number of bits/byte, 4-8
 BYTE Parity; // 0-4=no,odd,even,mark,space
 BYTE StopBits; // 0,1,2 = 1, 1.5, 2
 char XonChar; // Tx and Rx XON character
 char XoffChar; // Tx and Rx XOFF character

Communication Reference Page 33 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

 char ErrorChar; // error replacement character
 char EofChar; // end of input character
 char EvtChar; // received event character
 WORD wReserved1; // reserved; do not use
} DCB;

Members

DCBlength
Specifies the length, in bytes, of the DCB structure.

BaudRate
Specifies the baud rate at which the communications device operates. This member can be an actual
baud rate value, or one of the following baud rate indexes:

fBinary
Specifies whether binary mode is enabled. The Win32 API does not support nonbinary mode
transfers, so this member must be TRUE. Using FALSE will not work.

fParity
Specifies whether parity checking is enabled. If this member is TRUE, parity checking is performed
and errors are reported.

fOutxCtsFlow
Specifies whether the CTS (clear-to-send) signal is monitored for output flow control. If this member
is TRUE and CTS is turned off, output is suspended until CTS is sent again.

fOutxDsrFlow
Specifies whether the DSR (data-set-ready) signal is monitored for output flow control. If this
member is TRUE and DSR is turned off, output is suspended until DSR is sent again.

fDtrControl
Specifies the DTR (data-terminal-ready) flow control. This member can be one of the following
values:

fDsrSensitivity
Specifies whether the communications driver is sensitive to the state of the DSR signal. If this
member is TRUE, the driver ignores any bytes received, unless the DSR modem input line is high.

fTXContinueOnXoff
Specifies whether transmission stops when the input buffer is full and the driver has transmitted the
XoffChar character. If this member is TRUE, transmission continues after the input buffer has come

CBR_110 CBR_19200
CBR_300 CBR_38400
CBR_600 CBR_56000
CBR_1200 CBR_57600
CBR_2400 CBR_115200
CBR_4800 CBR_128000
CBR_9600 CBR_256000
CBR_14400

Value Meaning
DTR_CONTROL_DISABLE Disables the DTR line when the device is opened

and leaves it disabled.
DTR_CONTROL_ENABLE Enables the DTR line when the device is opened

and leaves it on.
DTR_CONTROL_HANDSHAKE Enables DTR handshaking. If handshaking is

enabled, it is an error for the application to adjust
the line by using the EscapeCommFunction
function.

Communication Reference Page 34 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

within XoffLim bytes of being full and the driver has transmitted the XoffChar character to stop
receiving bytes. If this member is FALSE, transmission does not continue until the input buffer is
within XonLim bytes of being empty and the driver has transmitted the XonChar character to
resume reception.

fOutX
Specifies whether XON/XOFF flow control is used during transmission. If this member is TRUE,
transmission stops when the XoffChar character is received and starts again when the XonChar
character is received.

fInX
Specifies whether XON/XOFF flow control is used during reception. If this member is TRUE, the
XoffChar character is sent when the input buffer comes within XoffLim bytes of being full, and the
XonChar character is sent when the input buffer comes within XonLim bytes of being empty.

fErrorChar
Specifies whether bytes received with parity errors are replaced with the character specified by the
ErrorChar member. If this member is TRUE and the fParity member is TRUE, replacement occurs.

fNull
Specifies whether null bytes are discarded. If this member is TRUE, null bytes are discarded when
received.

fRtsControl
Specifies the RTS (request-to-send) flow control. If this value is zero, the default is
RTS_CONTROL_HANDSHAKE. This member can be one of the following values:

fAbortOnError
Specifies whether read and write operations are terminated if an error occurs. If this member is
TRUE, the driver terminates all read and write operations with an error status if an error occurs. The
driver will not accept any further communications operations until the application has acknowledged
the error by calling the ClearCommError function.

fDummy2
Reserved; do not use.

wReserved
Not used; must be set to zero.

XonLim
Specifies the minimum number of bytes allowed in the input buffer before the XON character is sent.

XoffLim
Specifies the maximum number of bytes allowed in the input buffer before the XOFF character is
sent. The maximum number of bytes allowed is calculated by subtracting this value from the size, in
bytes, of the input buffer.

ByteSize
Specifies the number of bits in the bytes transmitted and received.

Parity
Specifies the parity scheme to be used. This member can be one of the following values:

Value Meaning
RTS_CONTROL_DISABLE Disables the RTS line when the device is opened and

leaves it disabled.
RTS_CONTROL_ENABLE Enables the RTS line when the device is opened and

leaves it on.
RTS_CONTROL_HANDSHAKE Enables RTS handshaking. The driver raises the RTS

line when the "type-ahead" (input) buffer is less than
one-half full and lowers the RTS line when the buffer
is more than three-quarters full. If handshaking is
enabled, it is an error for the application to adjust the
line by using the EscapeCommFunction function.

RTS_CONTROL_TOGGLE Specifies that the RTS line will be high if bytes are
available for transmission. After all buffered bytes
have been sent, the RTS line will be low.

Communication Reference Page 35 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

StopBits
Specifies the number of stop bits to be used. This member can be one of the following values:

XonChar
Specifies the value of the XON character for both transmission and reception.

XoffChar
Specifies the value of the XOFF character for both transmission and reception.

ErrorChar
Specifies the value of the character used to replace bytes received with a parity error.

EofChar
Specifies the value of the character used to signal the end of data.

EvtChar
Specifies the value of the character used to signal an event.

wReserved1
Reserved; do not use.

Remarks

When a DCB structure is used to configure the 8250, the following restrictions apply to the values
specified for the ByteSize and StopBits members:

The number of data bits must be 5 to 8 bits.
The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits with 1.5
stop bits.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Requires version 1.0 or later.
 Header: Declared in winbase.h.

See Also

Communications Overview, Communication Structures, BuildCommDCB, ClearCommError,
EscapeCommFunction, GetCommState, SetCommState

MODEMDEVCAPS

Value Meaning
EVENPARITY Even
MARKPARITY Mark
NOPARITY No parity
ODDPARITY Odd
SPACEPARITY Space

Value Meaning
ONESTOPBIT 1 stop bit
ONE5STOPBITS 1.5 stop bits
TWOSTOPBITS 2 stop bits

Communication Reference Page 36 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

The MODEMDEVCAPS structure contains information about the capabilities of a modem.

typedef struct modemdevcaps_tag {
 DWORD dwActualSize; // size of returned data, in bytes
 DWORD dwRequiredSize; // total size of structure
 DWORD dwDevSpecificOffset; // offset of provider-defined data
 DWORD dwDevSpecificSize; // size of provider-defined data
 DWORD dwModemProviderVersion; // provider version number
 DWORD dwModemManufacturerOffset; // offset of manufacturer name
 DWORD dwModemManufacturerSize; // length of manufacturer name
 DWORD dwModemModelOffset; // offset of model name
 DWORD dwModemModelSize; // length of model name
 DWORD dwModemVersionOffset; // offset of version name
 DWORD dwModemVersionSize; // length of version name
 DWORD dwDialOptions; // bitmap of supported values
 DWORD dwCallSetupFailTimer; // maximum in seconds
 DWORD dwInactivityTimeout; // maximum in tenths of seconds
 DWORD dwSpeakerVolume; // bitmap of supported values
 DWORD dwSpeakerMode; // bitmap of supported values
 DWORD dwModemOptions; // bitmap of supported values
 DWORD dwMaxDTERate; // maximum value in bit/s
 DWORD dwMaxDCERate; // maximum value in bit/s
 BYTE abVariablePortion [1]; // variable-length data
} MODEMDEVCAPS, *PMODEMDEVCAPS, *LPMODEMDEVCAPS;

Members

dwActualSize
Specifies the size, in bytes, of the data actually returned to the application. This member may be less
than the dwRequiredSize member, if an application did not allocate enough space for the variable-
length portion of the structure.

dwRequiredSize
Specifies the number of bytes required for the entire MODEMDEVCAPS structure, including the
variable-length portion.

dwDevSpecificOffset
Specifies the offset of the provider-defined portion of the structure, in bytes relative to the beginning
of the structure.

dwDevSpecificSize
Specifies the size of the provider-defined portion of the structure, in bytes.

dwModemProviderVersion
Specifies the version of the service provider. The format and use of this member depends on the
service provider.

dwModemManufacturerOffset
Specifies the offset of a text string that contains the name of the modem manufacturer. The offset is
specified in bytes relative to the beginning of the structure.

dwModemManufacturerSize
Specifies the length of the modem manufacturer name, in bytes. The string is not null-terminated.

dwModemModelOffset
Specifies the offset of a text string that contains the model of the modem. The offset is specified in
bytes relative to the beginning of the structure.

dwModemModelSize
Specifies the length of the model name, in bytes. The string is not null-terminated.

dwModemVersionOffset
Specifies the offset of a text string that gives the version and revision of the attached modem, if the
provider could determine the information. The offset is specified in bytes relative to the beginning of
the structure.

dwModemVersionSize
Specifies the length of the modem version string, in bytes. The string is not null-terminated.

dwDialOptions

Communication Reference Page 37 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Specifies dialing options that are supported by the modem device. This member can be zero or more
of the following values:

dwCallSetupFailTimer
Specifies the maximum call setup timeout supported by the modem, in seconds. This is the largest
value that can be specified for the corresponding member of the MODEMSETTINGS structure.

dwInactivityTimeout
Specifies the maximum inactivity timeout supported by the modem, in tenths of seconds. This is the
largest value that can be specified for the corresponding member of the MODEMSETTINGS
structure.

dwSpeakerVolume
Specifies the speaker volume settings supported by the modem. This member can be zero or more of
the following values:

dwSpeakerMode
Specifies the speaker mode settings supported by the modem. This member can be zero or more of
the following values:

dwModemOptions
Specifies supported modem options. This member can be zero or more of the following values:

When MODEMDEVCAPS is used to set modem options, as part of the MODEMSETTINGS structure,
these values are used as follows:

Value Meaning
DIALOPTION_DIALBILLING Specifies that the modem supports waiting for

billing tone (bong).
DIALOPTION_DIALQUIET Specifies that the modem supports waiting for quiet.
DIALOPTION_DIALDIALTONE Specifies that the modem supports waiting for a dial

tone.

Value Meaning
MDMVOLFLAG_LOW The modem supports low (MDMVOL_LOW) volume.
MDMVOLFLAG_MEDIUM The modem supports medium (MDMVOL_MEDIUM)

volume.
MDMVOLFLAG_HIGH The modem supports high (MDMVOL_HIGH) volume.

Value Meaning
MDMSPKRFLAG_OFF The modem supports the MDMSPKR_OFF

speaker mode.
MDMSPKRFLAG_DIAL The modem supports the MDMSPKR_DIAL

speaker mode.
MDMSPKRFLAG_ON The modem supports the MDMSPKR_ON speaker

mode.
MDMSPKRFLAG_CALLSETUP The modem supports the

MDMSPKR_CALLSETUP speaker mode.

MDM_BLIND_DIAL MDM_FLOWCONTROL_SOFT
MDM_CCITT_OVERRIDE MDM_FORCED_EC
MDM_CELLULAR MDM_SPEED_ADJUST
MDM_COMPRESSION MDM_TONE_DIAL
MDM_ERROR_CONTROL MDM_V23_OVERRIDE
MDM_FLOWCONTROL_HARD

Communication Reference Page 38 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

For V.23 to be set, both MDM_CCITT_OVERRIDE and MDM_V23_OVERRIDE must be set.

dwMaxDTERate
Maximum DTE rate in bits per second.

dwMaxDCERate
Maximum DCE rate in bits per second.

abVariablePortion
Contains variable-length information, including strings and any provider-defined information.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in mcx.h.

See Also

Communications Overview, Communication Structures, MODEMSETTINGS

MODEMSETTINGS
The MODEMSETTINGS structure contains information about a modem's configuration.

typedef struct modemsettings_tag {
 DWORD dwActualSize; // size of returned data, in bytes
 DWORD dwRequiredSize; // total size of structure
 DWORD dwDevSpecificOffset; // offset of provider-defined data
 DWORD dwDevSpecificSize; // size of provider-defined data

 // Static local options (read/write)
 DWORD dwCallSetupFailTimer; // call setup timeout, in seconds
 DWORD dwInactivityTimeout; // timeout, in tenths of seconds
 DWORD dwSpeakerVolume; // speaker volume level
 DWORD dwSpeakerMode; // speaker mode
 DWORD dwPreferredModemOptions; // preferred options

 // negotiated options (read only) for current or last call
 DWORD dwNegotiatedModemOptions; // bitmap specifying options
 DWORD dwNegotiatedDCERate; // DCE rate, in bits per second

 // Variable portion for proprietary expansion
 BYTE abVariablePortion[1]; // variable-length data
} MODEMSETTINGS, *PMODEMSETTINGS, *LPMODEMSETTINGS;

Value Meaning
MDM_CCITT_OVERRIDE When set, CCITT modulations are enabled for V.21

and V.22 or V.23.

When clear, bell modulations are enabled for 103 and
212A.

MDM_V23_OVERRIDE When set, CCITT modulations are enabled for V.23.

When clear, CCITT modulations are enabled for V.21
and V.22.

Communication Reference Page 39 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Members

dwActualSize
Specifies the size, in bytes, of the data actually returned to the application. This member may be less
than the dwRequiredSize member if an application did not allocate enough space for the variable-
length portion of the structure.

dwRequiredSize
Specifies the number of bytes required for the entire MODEMDEVCAPS structure, including the
variable-length portion.

dwDevSpecificOffset
Specifies the offset of the provider-defined portion of the structure, in bytes relative to the beginning
of the structure.

dwDevSpecificSize
Specifies the size of the provider-defined portion of the structure, in bytes.

dwCallSetupFailTimer
Specifies the maximum number of seconds the modem should wait, after dialing is completed, for an
indication that a modem-to-modem connection has been established. If a connection is not
established in this interval, the call is assumed to have failed. This member is equivalent to register S7
in Hayes® compatible modems.

dwInactivityTimeout
Specifies the maximum number of seconds of inactivity allowed after a connection is established. If
no data is either transmitted or received for this period of time, the call is automatically terminated.
This time-out is used to avoid excessive long distance charges or online service charges if an
application unexpectedly locks up or the user leaves.

dwSpeakerVolume
Specifies the volume level of the monitor speaker when the speaker is on. This member can be one of
the following values:

The MODEMDEVCAPS structure specifies the speaker volumes a modem supports. Actual
volumes are hardware-specific.

dwSpeakerMode
Specifies when the speaker should be on. This member can be one of the following values:

dwPreferredModemOptions
Specifies the modem options requested by the application. The local and remote modems negotiate
modem options during call setup; this member specifies the initial negotiating position of the local
modem.

The dwModemOptions member of the MODEMDEVCAPSstructure specifies the modem options
supported by the local modem. For a list of modem options, see the description of the
MODEMDEVCAPS structure.

dwNegotiatedModemOptions

Value Meaning
MDMVOL_LOW Low volume.
MDMVOL_MEDIUM Medium volume.
MDMVOL_HIGH High volume.

Value Meaning
MDMSPKR_OFF The speaker is always off.
MDMSPKR_CALLSETUP The speaker is on until a connection is established.
MDMSPKR_ON The speaker is always on.
MDMSPKR_DIAL The speaker is on until a connection is established, except

that it is off while the modem is actually dialing.

Communication Reference Page 40 of 40

file://C:\WINDOWS\TEMP\~hh7C35.htm 99.09.08

Specifies the modem options that are actually in effect. This member is filled in after a connection is
established and the local and remote modems negotiate modem options.

The dwModemOptions member of the MODEMDEVCAPS structure specifies the modem options
supported by the local modem. For a list of modem options, see the description of the
MODEMDEVCAPS structure.

dwNegotiatedDCERate
Specifies the DCE rate that is in effect. This member is filled in after a connection is established and
the local and remote modems negotiate modem modulations.

abVariablePortion
Contains provider-defined information, if any.

QuickInfo

 Windows NT: Requires version 4.0 or later.
 Windows: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in mcx.h.

See Also

Communications Overview, Communication Structures, MODEMDEVCAPS

