СХЕМЫ И ДОКУМЕНТАЦИЯ

Описания / Радиоканал на микросборках фирмы RFM


<<< К списку раздела.

Радиоканал на микросборках фирмы RFM.

Тенденции рынка.

За последние 3-4 года в мире отмечается всё расширяющаяся тенденция к переводу бытовой техники на управление по радиоканалу и интеграцию в домашнюю беспроводную локальную сеть (WLAN). Необычайно популярными стали беспроводные соединения, использующие общедоступные полосы радиочастот от сотен МГц до единиц ГГц. Это разного рода системы радиоуправления, охранной и пожарной сигнализации, автоматическое открытие дверей и ворот, централизованное управление микроклиматом и освещением.

Существует ряд традиционных решений, основанных на дискретных LC-схемах передатчиков и сверхрегенеративных приёмников. Такие приёмники характеризуются невысокой избирательностью и большой восприимчивостью к помехам. Из практики известно, что устройства, проектируемые на основе сверхрегенеративных систем, несмотря на малую потребляемую мощность, простоту и дешевизну, имеют ограниченное применение из-за сравнительно низкой надёжности. Они могут самопроизвольно включаться или вообще отказываться работать, поэтому их не используют в профессиональных решениях (встречаются случаи включения автосигнализации в припаркованной у тротуара машине пешеходом, разговаривающим по сотовому телефону).

Супергетеродинные приёмники, с другой стороны, имеют стабильные параметры, хорошую чувствительность и избирательность, но это приводит к усложнению устройства. В таких схемах используется распределение усиления между усилителями ВЧ и ПЧ. Однако, их основным недостатком является большая потребляемая мощность, нежелательное излучение гетеродина, больший размер и высокая стоимость.

Похожая ситуация и с передатчиками: узкая полоса и высокая стабильность частоты в широком температурном диапазоне требуют больших размеров и стоимости.

Иной принцип используют производимые фирмой RF Monolitics (США) гибридные микросборки, интегрирующие фильтры и резонаторы на поверхностных акустических волнах (ПАВ), а также ВЧ аналоговые и цифровые цепи. Выпускаемые микросборки выполняют роль радиоприёмников, передатчиков и приёмопередатчиков для передачи цифровых сигналов на фиксированных частотах. Они упакованы в миниатюрные керамические планарные корпуса размерами около 10ґ10ґ2 мм, имеют рабочий температурный диапазон от -40 до +85°С. Их применение не требует ни внешних высокостабильных частотозадающих компонентов, ни настройки. Подробная техническая документация и рекомендации по применению доступны на сайте RF Monolitics www.rfm.com.

Ниже представляем основную информацию о наиболее интересных гибридных микросборках фирмы RFM.

Таблица 1. Стандартные гибридные микросборки.

Частота, МГцПередатчикПриемникПриемопередатчик
315,0HX1005
TX5001
RX1405
RX5001
TR3001
418,0HX1003
TX5002
RX1300
RX1305
RX13010
RX1320
TR3002
433,92HX1000
HX1007
TX5000
RX1000
RX1005
RX1010
RX1020
RX5000
RX5500
TR3000
868,35HX4007
TX6001
RX4700
RX4756
RX6001
RX6501
TR1001
868,35HX2000
HX6000
RX2010
RX2020
RX2056
RX6000
TR1000

Передатчик HX1000.

Блок-схема передатчика HX1000 представлена на рис. 1. Генератор выполнен на усилителе с ПАВ фильтром в цепи обратной связи. Другой идентичный фильтр на ПАВ используется для подавления гармоник в выходном сигнале. При передаче используется 100-% амплитудная модуляция.

Рис. 1. Блок-схема HX1000.

Таблица 2. Основные параметры HX1000.

ПараметрЗначение
Мин.Тип.Макс.
Рабочая частота, МГц433,72433,92434,12
Выходная мощность, мВт  1
Напряжение питания, В2,73,03,3
Ток потребления (пик.), мА 710
Ток покоя, мкА  1
Рабочая температура, °С-40 +85
Выходное сопротивление, Ом 50 

Приёмник RX1000.

Рис. 2. Блок-схема приемника RX1000.

Главной особенностью и новинкой приёмников RFM является уникальная внутренняя архитектура ASH (Amplifier Sequenced Hybrid receiver), базирующая на ПАВ-технологии. На рис. 2 представлена упрощённая блок-схема RX1000. Типовая частотная характеристика приёмника представлена на рис. 3. Законченная схема приёмника требует лишь трёх дополнительных внешних конденсаторов (рис. 6).

Рис. 3. АЧХ приемника RX1000.

Таблица 3. Основные параметры RX1000.

ПараметрЗначение
Мин.Тип.Макс.
Рабочая частота, МГц433,72433,92434,12
Чувствительность, дБм -100 
Напряжение питания, В2,73,03,5
Ток потребления, мА 1,11,25
Выходное сопротивление, Ом 50 
Рабочая температура, °С-40 +85

Трансивер TR3000.

Функционально, это законченный приёмопередатчик, перекрывающий расстояния 50–250 м. Пропускная способность составляет 19,2 кБод при 100-% амплитудной модуляции (OOK — On/Off Keying). При снижении глубины модуляции и работе в непрерывном режиме ASK (Amplitude Shift Keying) скорость передачи данных возрастает до 115,2 кБод. Встроенный в TR3000 приёмник выполнен по ASH-технологии. Он имеет регулируемый порог шумоподавления и АРУ. Выпускается в корпусе SM-20L для монтажа на поверхность, с размерами 9x10x2 мм.

Таблица 4. Основные параметры TR3000.

ПараметрЗначение
Мин.Тип.Макс.
Рабочая частота, МГц433,72433,92434,12
Время вкл./выкл. передатчика (ООК), мкс  12/6
Время переключ. прием/передача, мкс 20 
Выходная мощность, мВт 0,75 
Напряжение питания, В2,7 3,5
Ток потребления приемника, мА  1,8
Ток потребления передатчика (пик), мА  12
Ток потребления в режиме sleep, мкА  5
Рабочая температура, °С-40 +85

Внутренняя структура ASH-приёмника.

ASH-тракт (рис. 2) состоит из входного антенного ПАВ-фильтра, первого и второго усилителей ВЧ, работающих с временным разделением, и промежуточной линии задержки на ПАВ. Задержка составляет около 0,5 мкс. УВЧ1 и УВЧ2 работают попеременно, в противофазе, через линию задержки, что исключает перекрёстную связь при больших коэффициентах усиления, так как цепь усиления разорвана во времени. Выход УВЧ2 подключен через амплитудный детектор к ФНЧ с шириной полосы 2–150 кГц, откуда НЧ-сигнал поступает через внешний конденсатор на компаратор, формирующий цифровую последовательность.

При этом достигается чувствительность -98 дБм и подавление боковых полос не менее чем на 90 дБ. Общее усиление соизмеримо с получаемым в супергетеродинном приёмнике и имеет отличную стабильность. Селективность также соизмерима с супергетеродином, так как внеполосная режекция осуществляется и во входном ПАВ-фильтре, и в линии задержки.

Первые практические реализации ASH-технологии (1994 г.) представляли собой согласованные наборы из специализированной микросхемы и 2 ПАВ-устройств. Сейчас в виде единой микросборки поставляются не только приёмники, но и приёмопередатчики.

Более того, ASH-структуры усиленно развиваются, и на смену их второму поколению приходят следующие. Серии HX/RX 1000 и 2000 в этом году будут заменены сериями TX/RX 5000 и 6000. Новое поколение pin-to-pin совместимо с предыдущим, но имеет ещё один каскад ПАВ-фильтрации, значительно улучшенную чувствительность в полосе 800–900 МГц и расширенный динамический диапазон. Введён экономичный режим энергопотребления. Суммируя всё сказанное, можно сказать, что приёмник с архитектурой ASH имеет больше преимуществ, чем его супергетеродинный эквивалент. Все необходимые функции заключены в одной микросборке. Схемы ПАВ дают возможность разместить весь приёмник в необычайно маленьком корпусе. Не требуется регулировка частоты. Отсутствие высокочастотного гетеродина устраняет проблему паразитного излучения и уменьшает потребление тока. Дальнейшее уменьшение потребляемой мощности получается за счёт попеременно включаемых усилителей ВЧ, что снижает потребляемый ток вдвое.

Практический пример использования микросборок.

Рис. 4. Сигнально-охранное устройство.

Сигнально-охранное устройство, собранное с использованием микросборок HX1000 и RX1000, представлено на рис. 4, 5 и 6.

Рис. 5. Схема сигнально-охранного устройства.

В схеме передатчика, кроме уже описанной микросборки HX1000, применён модулятор на микросхеме CD4011 (К561ЛА7). Два первых элемента ИЛИ-НЕ работают как “ключевой” генератор. Его выходной сигнал управляет звуковым генератором. Время действия “ключевого” импульса можно изменять корректировкой значений R1 и С1, а тон звукового сигнала — R2 и С2. К выходу приёмника RX1000 подключен усилитель на транзисторе Т1 с пьезокерамическим излучателем.

Рис. 6. Типовая схема приемника на базе RX1000.

Микросборки RFM могут быть смонтированы даже в обыкновенных крышках от соков. Внешние логические схемы подключаются к ним при помощи разъёмов и штекеров. Посередине крышек, через отверстия диаметром 3 мм, выведены антенны, выполненные из отрезков медной проволоки в эмалевой изоляции.

Рис. 7. Антенна на 433,92 МГц.

Нижняя часть антенны упрочнена при помощи изолирующей втулки и водостойкого клея и припаяна непосредственно к ножке микросборки. Полная длина антенны, вместе с катушкой индуктивно-стью около 68 нГн, составляет 90 мм. Эскиз антенны, с размерами, подобранными для частоты 433,92 МГц, показан на рис. 7. Для питания использованы две пальчиковые батарейки, но можно использовать и миниатюрные элементы CR2032. Реальный радиус действия такой системы составил около 250 м на открытой местности.

Рис. 8. Приемник с цифровым кодером.

Значительно повысить помехоустойчивость радиосигнализации можно, используя цифровое кодирование. В передатчике (рис. 8) можно использовать кодер MC145026 (Motorola), а в приёмнике (рис. 9) — декодер MC145028. Активный сигнал на выходе декодера появится только при совпадении кодовой комбинации на выводах 1-5 кодера и декодера. Таким образом, реализуя кодовое разделение канала, можно получить очень большое количество комбинаций, что позволит использовать один частотный канал многими пользователями.

Рис. 9. Приемник с цифровым декодером.

Д. Яблоков, Ян Суровец.

Обратите внимание: Монтаж микросборок RFM.

На сайте имеется дополнительная информация по данным микросборкам на английском языке в формате PDF:
RX5000.pdf - приемник 433,92 МГц
TX5000.pdf - передатчик 433,92 МГц
TR3000.pdf - приёмопередатчик
TR_Design.pdf - руководство по монтажу и топологии плат
10mw_amp.pdf - пример трансивера
RFM_antennas.pdf - антенны для этих модулей, чертежи/описания


Разработка и оформление Андрея Александровича Борисенко aka ICE.
По всем вопросам просьба писать мне на icenet (at) narod.ru