СХЕМЫ И ДОКУМЕНТАЦИЯ

Простой трехдиапазонный ППП на транзисторах (КВ диапазоны 7, 14, 21 МГц)

Путь в эфир начинающего радиолюбителя нередко начинается с постройки несложного по схеме и конструкции приемника прямого преобразования (другое название – гетеродинный приемник).

Но, как правило, это однодиапазонные конструкции [1,2,3 ]. Реализация многодиапазонных ППП традиционным путем (с переключением контуров гетеродина и входного фильтра многоконтактным галетным или барабанным переключателем[4], или используя сменные платы с контурами [5 ]) приводит не только к существенному усложнению конструкции и налаживания, но и появлению проблем со стабильностью частоты ГПД.

Но есть и другой, более удачный с точки зрения автора, подход. Вспомним, что частоты основных радиолюбительских КВ диапазонов образуют правильную геометрическую прогрессию, такую, что гармоники нижних диапазонов попадают на частоты других, более высокочастотных диапазонов.

Поэтому имеется замечательная возможность применить в многодиапазонном ППП один не переключаемый гетеродин, работающий только на одном диапазоне, и который имеет, как правило, лучшую стабильность частоты, т.к. его монтаж получается компактнее и жестче, а главное - в его контурной цепи отсутствуют переключающие, а значит нестабильные, контакты.

Структурная схема такого ГПД возможна в двух вариантах – с задающим генератором, работающим на самом высокочастотном диапазоне с последующим делением частоты цифровыми счетчиками (например, такой способ реализован в [6]) или с задающим генератором, работающим на частоте самого низкочастотного диапазона с последующим умножением частоты в буферных каскадах.

Последний способ реализован в очень интересной конструкции И.Григорова [7]. Более того, используя свойство ключевого смесителя работать на гармониках частоты гетеродина, можно вообще обойтись без умножения частоты, что и положено в основу конструкции этого приемника.

Несмотря на внешнее сходство со схемой[7], предлагаемый вашему вниманию приемник благодаря оптимизации работы смесителя имеет лучшие на порядок чувствительность и ДД, повышенную избирательность по соседнему каналу, меньшие габариты, более экономичен, но при этом проще в изготовлении и налаживании. В нем нет дефицитных деталей и построить его смогут даже малоопытные радиолюбители.

Основные технические характеристики:

Принципиальная схема

Принципиальная схема приемника приведена на рис.1. Сигнал с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре R1.

По сравнению с одиночным потенциометром подобное решение обеспечивает бОльшую глубину регулировки ослабления ( более 60дБ) во всем КВ диапазоне, что позволяет обеспечить оптимальную работу приемника практически любой антенной. Далее сигнал через катушку связи L1 поступает на двухконтурный полосовой фильтр (ПДФ) L2C5, L3C10 с емкостной связью через конденсатор С9.

Переключение диапазонов производится тумблером SA1, имеющем нейтральное (незамкнутое) положение контактов. В положении контактов, показанном на схеме включен диапазон 21МГц. При переключении на 14МГц к контурам подключаются дополнительные конденсаторы С1,С3 и С6,С14, смещающие резонансные частоты контуров на середину рабочего диапазона. При переключении на диапазон 7МГц к контурам ПДФ подключаются не только конденсаторы С2,С4 и С8,С15, но и дополнительный конденсатор связи С7, что необходимо для получения оптимальной формы АЧХ ПДФ на этом диапазоне.

Простой трехдиапазонный ППП на транзисторах (КВ диапазоны 7, 14, 21 МГц), схема

Рис. 1. Принципиальная схема КВ радиоприемника ППП на три диапазона.

Нагрузкой ПДФ служит однотактный ключевой смеситель на основе полевого транзистора VT1. Это важный узел, «сердце» приемника, определяющий его основные параметры и заслуживает особого внимания. В процессе моих экспериментов с ключевыми смесителями ППП было обнаружено [8], что ключевой смеситель гетеродинного приемника, нагруженный по выходу емкостями, со стороны входа работает как узкополосный синхронный фильтр (СФ)[9], с центральной частотой на частоте гетеродина и полосой пропускания равной удвоенной полосе пропускания по ЗЧ.

Физические основы этого явления достаточно доступно были изложены в [10]. Обратите внимание, что на частотах верхних КВ диапазонов добротность этого простого СФ достигает совершенно фантастических величин - тысяч и десятков тысяч!

Например:

Более того, ярко выраженная частотная зависимость входного сопротивления ключевого смесителя при высокоомной нагрузке последнего повышает селективность подключенного к нему ПДФ. При этом на пологой АЧХ входного контура (или ПДФ) появляется острый пик шириной, равной удвоенной полосе пропускания по НЧ (в данном случае примерно 5 кГц).

Центральная частота этого пика совпадает с частотой настройки гетеродина и перестраивается вместе с ней. При этом эффект повышения добротности контура тем больше, чем выше соотношение нагруженной и конструктивной добротности, и фактически равен этому соотношению (разумеется при достаточно большом сопротивлении нагрузки смесителя гетеродинного приемника, или если угодно, СФ).

Для классической системы согласования контура (внесенное сопротивления источника/нагрузки равны) повышение добротности контура не превысит 2раз. Поэтому выгодно уменьшать коэффициент включения источника сигнала - согласованной антенны и применить полное подключение к контуру смесителя, имеющего в свою очередь, высокоомную нагрузку.

При этом внеполосные помехи существенно ослабляются, чувствительность и, соответственно, ДД в виду исключительно малых потерь во входных цепях приемника существенно возрастают. И это дает нам возможность создавать более совершенные приемники на принципе прямого преобразования.
Но вернемся к принципиальной схеме ППП. Для реализации высоких селективных свойств смесителя применено полное подключение к ПДФ, а нагрузка смесителя по сравнению с традиционной повышена в несколько раз – до 5-10кОм.

Полевой транзистор VT1, включен в режиме управляемого сопротивления[11]. При малых напряжениях сток-исток, независимо от полярности, канал полевого транзистора ведет себя как обычное сопротивление. Его значение можно менять от нескольких мегоом при запирающем напряжении на затворе до десятков ом при отпирающем.

Таким образом, при подаче гетеродинного напряжения через конденсатор С17 на затвор, получится почти идеальный смеситель. Запирающее напряжение на затворе устанавливается автоматически из-за выпрямляющего действия p-n перехода (автосмещение) транзистора VT1.

При этом изменяя амплитуду гетеродинного напряжения, а значит и величину запирающего напряжения на затворе, мы может устанавливать в широких пределах относительную длительность открытого состояния канала, или скважность. При преобразовании на гармониках для выравнивания чувствительности по диапазонам скважность открытого состояния выбрана близкой к 4, что в данной схеме получается автоматически, т.к. преобразователь спроектирован так, что не требует кропотливой работы по подбору напряжения гетеродина.

Для этого достаточно лишь выбрать полевой транзистор VT1 с напряжением отсечки, меньшем чем у VT2, не менее, чем в 2 раза.
К достоинствам смесителя относится очень малая мощность, потребляемая от гетеродина, поэтому последний практически не нагружается, что позволило отказаться от буферного каскада и тем самым упростить схему.

Развязка входных и гетеродинной цепей однотактного смесителя на полевом транзисторе при его работе на основной частоте ГПД в основном определяется проходной емкостью сток-затвор транзистора, что в общем случае является одним из существенных его недостатков, затрудняющая успешное применение его на ВЧ диапазонах.

В данном случае такой проблемы нет, т.к. только на диапазоне 7МГц смеситель работает на основной частоте ГПД, а на диапазоне 14МГц – на второй гармонике ГПД, а на 21МГц –соответственно на третьей, при этом на верхних диапазонах реально сигналов с такой частотой нет, а имеющийся остаточный сигнал ГПД частотой порядка 7МГц очень эффективно подавляются ПДФ диапазонов 14 и 21МГц.

Наименьшее подавление сигнала ГПД будет на 7МГц диапазоне, но и здесь его подавление( на антенном входе) превышает 60дБ – вполне достаточно для нормальной работы приемника. Гетеродин выполнен по схеме индуктивной трехточки ( схема Хартли) на полевом транзисторе VT2. Контур гетеродина содержит катушку L4 и конденсаторы С11-С13.

Конденсатором переменной емкости (КПЕ) С11 частота генерации перестраивается в пределах 6,99-7,18МГц, что соответствует по второй гармонике диапазону 13,98-14,36Мгц, а по третьей - 20,97-21,54МГц. Связь контура с цепью затвора VT2 осуществляется посредством конденсатора С16, на котором, благодаря выпрямляющему действию p-n перехода транзистора VT2, образуется автосмещение, достаточно жестко стабилизирующее амплитуду колебаний. Так, например, при возрастании амплитуды колебаний запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС).

Собственно, ПОС получается при протекании тока транзистора по части витков катушки L4. Отвод к истоку сделан от 1/3 части общего числа витков.

Основная фильтрация сигнала в ППП осуществляется на низкой частоте фильтром нижних частот (ФНЧ) и потому качество работы приемника во многом определяется селективностью его ФНЧ. Для улучшения помехоустойчивости и селективности приемника на входе УНЧ применен двухзвенный ФНЧ C18L5C19L6C24с частотой среза примерно 2,7кГц, составленный из двух последовательно включенных П-образных LC звеньев.

Конденсатор С21 образует дополнительный полюс затухания за полосой среза и тем самым обеспечивает увеличение крутизны спада АЧХ до 40дБ/октаву. В качестве катушек ФНЧ применена магнитофонная ГУ, что позволило исключить из конструкции ППП трудоемкие в изготовлении низкочастотные катушки.

В числе положительных свойств этого решения можно отметить малые габариты фильтра, высокую линейность при больших уровнях сигналов благодаря наличию в магнитопроводе немагнитного зазора (Кг меньше 1% при входном 1Вэфф), малую чувствительность к наводкам благодаря хорошей штатной экранировке.

Следует отметить, что лучшее подавление ( на 3 дБ) в двухзвенном ФНЧ получается при перекрестном соединении катушек. Несмотря на то, что нагрузка ФНЧ (входное сопротивление УЗЧ порядка 5-10кОм ) выбрана существенно больше характеристического сопротивления ФНЧ (что требуется для реализации хороших селективных свойств смесителя) неприятного характерного «звона» сигнала не наблюдается, т.к. в виду небольшой добротности катушек ГУ форма АЧХ ФНЧ имеет лишь небольшой подъем в области верхних звуковых частот, что благоприятно для улучшения разборчивости речи.  УЗЧ приемника двухкаскадный, с непосредственной связью между каскадами.

Он собран по типовой схеме на современных малошумящих транзисторах VT3, VT4 с высоким коэффициентом передачи тока. Благодаря стопроцентной отрицательной обратной связи по постоянному току режимы транзисторов по постоянному току устанавливаются автоматически и мало зависят от колебаний температуры и напряжения питания.

Чтобы входное сопротивление УЗЧ мало зависело от разброса параметров транзисторов, сопротивление резистора R6 относительно небольшим (15кОм). Нагрузкой УЗЧ служат высокоомные телефоны ТОН-2 с сопротивлением по постоянному току 4,4кОм, которые включаются непосредственно в коллекторную цепь транзистора VT4(через разъем Х3), при этом через их катушки протекает и переменный ток сигнала и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу.

Конденсатор С27 совместно с индуктивностью последовательно включенных наушников образует резонасный контур с частотой примерно 1,2кГц, но из-за большого активного сопротивления обмоток добротность последнего невысока - полоса пропускания по уровню -6дБ примерно 400-2800Гц, поэтому его влияние на общую АЧХ не очень существенно и носит характер вспомогательной фильтрации и небольшой коррекции АЧХ.

Так любителям телеграфа можно выбрать С27=22-33нФ, тем самым мы сместим резонанс вниз на частоты 800-1000Гц. Если сигнал глуховат и для улучшения разборчивости речевого сигнала нужно обеспечить подъем верхних частот, можно взять С27=2,2-4,7нФ, что поднимет резонанс вверх до 1,8-2,5кГц.

Конструкция и детали

Большинство деталей приемника смонтированы на печатной плате из односторонне фольгированного стеклотекстолита размером 41х99мм, чертеж которой со стороны печатных проводников приведен на рис. 2, а расположение деталей – на рис.3. Плата рассчитана на установку малогабаритных радиодеталей – резисторы С1-4, С2-23, МЛТ-0,062. Чертеж печатной платы со стороны печатных проводников

Рис. 2. Чертеж печатной платы со стороны печатных проводников.

Расположение деталей на печатной плате приемника

Рис. 3. Расположение деталей на печатной плате приемника.

При применении более крупных резисторов (0,125 или0,25Вт) их следует устанавливать вертикально. Керамические контурные конденсаторы термостабильные КМ, К10-17или аналогичные импортные(дисковые оранжевые с черной точкой или многослойные с термостабильностью МР0). Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные.

Конденсаторы С18,С19,С21,С24 желательно выбирать термостабильные - пленочные, металлопленочные например малогабаритные импортные серий МКТ,МКР и аналогичные. Остальные керамические блокировочные и электролитические – любого типа малогабаритные.
Катушки приемника L1-L4 выполнены на малогабаритных каркасах от контурных катушек ПЧ 10,7Мгц размерами 8х8х11 мм (рис. 4) от широко распространенных недорогих импортных радиоприемников и магнитол.

Контурные катушки ПЧ от приемников импортного производства

Рис. 4. Контурные катушки ПЧ от приемников импортного производства.

Катушки L2-L4 содержат по 18 витков провода ПЭЛ, ПЭВ диаметром 0,13-0,23мм, отвод у катушки L4 сделан от шестого витка, считая от вывода, соединенного с общим проводом. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 3 витка такого же провода.

Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран. При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственнно, подкорректировав чертеж печатной платы под новый конструктив.

Например, для широко распространенных каркасов контуров ПЧ от старых телевизоров диаметром 7,5-8,5мм с подстроечниками СЦР-1 ( М6х10) и прямоугольными ( могут быть и круглыми ) экранами, катушки L2-L4 содержат по 12 витков провода ПЭЛ, ПЭВ диаметром 0,4-0,7мм, намотанных на длине 10мм, при этом отвод у катушки L4 сделан от четвертого витка, считая от вывода, соединенного с общим проводом. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 2 витка такого же провода.

В качестве катушек L5, L6 ФНЧ с успехом можно применять любые доступные новые или б/у универсальные головки кассетных стереомагнитофонов отечественного или импортного производства. Их индуктивность, как правило, находится в диапазоне 60-180мГ, что нам вполне подходит, только для сохранения частоты среза ФНЧ надо обратнопропорционально изменить номиналы конденсаторов C18,C19,C21,C24. Это будет легко сделать на слух в процессе первых испытаний приемника в эфире.

КПЕ может быть любым, но обязательно с воздушным диэлектриком, иначе будет трудно получить приемлемую стабильность ГПД. Применение КПЕ с воздушным диэлектриком почти автоматически обеспечит нам весьма высокую стабильность ГПД без принятия специальных мер по термостабилизации.

Так, в авторском варианте ГПД (контурный конденсатор С13 КМ-5 группы М47) этот приемник на 21МГц при питании от "Кроны" держит SSB станцию не менее получаса, т.е абсолютная нестабильность (по третьей гармонике) не хуже 150-200Гц! Очень удобны КПЕ от УКВ блоков старых промышленных приемников, которые еще часто встречаются на наших радиорынках.

Именно такой применен в авторской конструкции (см.фото). Они имеют встроенный вернер 1:4, что существенно облегчает настройку на SSB станцию. Включив параллельно обе секции, получим емкость примерно 8-34пФ.Растягивающие кондесаторы С12,С13 служат для точной укладки диапазонов и их величина выбирается в зависимости от имеющегося в наличии КПЕ.

Расчетные значения растягивающих конденсаторов для наиболее распространенных КПЕ приведены в табл.1.

С11, пФ С12, пФ С13, пФ
8-34 > 10000 или заменить перемычкой 470
9-270 750 1300
9-360 680 1600
12-495 680 1800

Головные телефоны электромагнитные, обязательно высокоомные (с катушками электромагнитов индуктивностью примерно 0,5Гн и сопротивлением по­стоянному току 1500...2200 Ом), например, типа ТОН-1, ТОН-2, ТОН-2м, ТА-4, ТА-56м. При согласно-последовательном включении , т.е "+"одного соединен с"- "другого, имеют общее сопротивление по постоянному току 3,2-4,4 кОм, по переменному примерно 10-12кОм на частоте 1кГц.

Вилка включения телефонов заменяется стандартным трех- или пятиштырьковым разъемом от звукозаписывающей бытовой аппаратуры (СГ-3,СГ-5 или аналогичные импортные) – на схеме XS3. Между выводами 2 и 3штыревой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов питание приемника будет отключаться автоматически. Плюсовый провод телефонов соединяется с выводом 2 разема, что обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.[2]

Разъем ХS3 предназначен для подключения зарядного устройства или, в случае отсутствия встроенного аккумулятора, внешнего блока питания. Блок питания годится любой промышленного изготовления или самодельный, обеспечивающий стабилизированое напряжение +9…12В при токе не менее 12-15 ма.

Для автономного питания можно применять любые батарейки или аккумуляторы, размещенные в специальном контейнере. Например, очень удобен малогабаритный аккумулятор на 8,4В размером с "Крону" и емкостью 200мА/час, которого хватает практически на сутки напрерывной работы приемника.

В смесителе хорошо работают современные полевые тразисторы с p-n переходом, с минимальной проходной емкстью и малым напряжением отсечки – BF245A, J(U)309, КП307А,Б,КП303А,Б,И. В гетеродине можно применить любые современные полевые тразисторы с p-n переходом и анпряжением отсечки не менее 3,5-4В BF245C.J(U)310, КП307Г, КП303Г,Д,Е, КП302Б,В и т.п.
В качестве VT3,VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, желательно малошумящие, например отечественные КТ3102Д,Е или широко распространенные недорогие импортные 2N3904, BC547-549, 2SC1815 и т.п.
Внешний вид приемника приведен на рис.5, а вид на внутренний монтаж – на рис.6.

Внешний вид приемника на транзисторах (КВ диапазоны 7, 14, 21 МГц)

Рис. 5. Внешний вид приемника.

Конструкция шкального механизма видна на фото. В верхней части передней панели вырезано прямоугольное окно шкалы, сзади которого на расстоянии 1мм закреплен винтами М1,5 длиной 15мм подшкальник. На эти же винты насажены промежуточные капроновые ролики диаметром 4мм, обеспечивающие необходимый ход тросика.

Диск верньера применен стандартный, диаметром 13мм от блоков УКВ старых приемников. Шкала линейная, с отображением всех трех диапазонов.

Внутренний монтаж приемника на транзисторах КВ диапазоны 7, 14, 21 МГц

Рис. 6. Внутренний монтаж приемника.

Ось, на котором закреплена ручка настройки, использована от переменного резистора типа . От этого же резистора использованы элементы крепления оси на передней панели (см.рис.7). На оси следует сделать небольшую проточку (полукруглым надфилем, зажав в патрон электродрели ось), в которую укладывают тросик (два витка вокруг оси). Стрелка шкалы – отрезок провода ПЭВ диаметром 0,55мм.

Ось от переменного резистора

Рис. 7. Ось от переменного резистора.

Налаживание

Правильно смонтированный приемник с исправными деталями начинает работать, как правило, при первом же включении. Проверить общую работоспособность основных узлов приемника можно при помощи обычного мультиметра.

Сначала, включиво мультиметр в режиме измерения тока в разрыв цепи питания, проверяем, что потребляемый ток не превышает 12-15мА, в наушниках должны негромко прослушиваться собственные шумы приемника. Далее, переключив мультиметр в режим измерения постоянного напряжения, измеряем напряжение на эмиттере VT4 составляет примерно 0,5В.

При исправном УЗЧ прикосновение руки к его входным цепям должно вызывать появление в динамике громкого, рычащего звука. О работоспособности гетеродина свидетельствует наличие на затворах VT1, VT2 отрицательного напряжения автосмещения порядка нескольких вольт.
Настройка приемника проста и сводится к укладке частоты гетеродина на диапазоне 7МГц и настройке входных контуров ПДФ по максимуму сигнала. Удобно это делать при помощи генератора стандартных сигналов(ГСС). Переключаем приемник на диапазон 7МГц.

ГСС настраиваем на частоту 6,98 МГц и, установив уровень его выходного сигнала порядка 30-100мВ, подключаем его к антенному гнезду приемника. Ротор КПЕ переводим в положение максимальной емкости. Установив переключатель диапазонов в положение 7МГц, вращением сердечника катушки L4 добиваемся прослушивания сигнала ГСС.

Если это не удается, корректируем емкость кондесатора С14. Перестроив приемник на верхний конец диапазона, убеждаемся, что верхняя частота приема не менее, чем 7,18Мгц. При необходимости добиваемся этого подбором емкости конденсатора С13. После проведенных изменений , процедуру установки начала диапазона надо повторить.

Теперь можно приступать к градуировке механической шкалы. Ее градуируют на диапазоне 7МГц с помощью ГСС с интервалом 1,2 или 5кГц – в зависимости от линейных размеров самой шкалы. Поскольку ГПД у нас не переключаемый, разметка шкалы, сделанная на диапазоне 7МГц, справедлива и для верхних диапазонов, разумеется с учетом множителя 2 и 3. Авторский вариант разметки шкалы приведен на рис.5.

Настройку контуров ДПФ следует начинать с диапазона 21Мгц. Подключив к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осцилограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 21,22МГц.

Настроившись приемником на сигнал ГСС поочередным вращением сердечников катушек L2,L3 добиваемся максимального уровня сигнала(максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень сигнала на выходе УНЧ примерно 0,3-0,5В.Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону. Если вращением сердечника( в обе стороны) не получается зафиксировать четкий максимум, т.е сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора.

Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора контура С5(или С11) надо немного уменьшить , как правило(если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс.

И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора контура С5(или С11) надо увеличить. Аналогичным образом настраиваем контура ПДФ диапазонов 14Мц и 7МГц, установив частоту ГСС 14,18 и 7,05Мгц соответственно, но только регулировкой триммеров ( сердечники катушек L2,L3 при этом уже не трогаем).

Укладку диапазонов и градуировку шкалы можно провести и без ГСС[12], но нам понадобится контрольный приемник, в качестве которого можно применить любой исправный приемник (связной или радиовещательный), имеющий хотя бы один широкий или несколько растянутых КВ диапазонов – не критично. Наиболее близким к любительским диапазонам является радиовещательный 41м диапазон, который в реальных приемниках как правило охватывает и частоты ниже 7100кГц, по крайней мере до 7000кГц.

Разумеется, проще всего проводить калибровку при помощи связного приемника (особенно с цифровой шкалой) или переделанного ( со встроенным детектором смесительного типа) радиовещательного АМ. Если у вас нет такого, а просто обычный АМ приемник – можно конечно попробовать ловить на слух присутсвие мощной несущей, как рекомендуется в некоторых описаниях, но, откровенно говоря, это занятие не для слабонервных - затруднительно сделать даже при поиске основной частоты ГПД, не говоря уже о гармониках.

Поэтому не будем мучаться - если контрольный приемник любит АМ, давайте сделаем ему АМ! Для этого (см.рис.1) соединим выход УНЧ( коллектор VT4) с его входом(базаVT3) при помощи вспомогательного конденсатора емкостью 10-22нФ ( не критично), тем самым превратим наш УНЧ в генератор НЧ, а смеситель теперь будет выполнять ( и довольно эффективно!) функции модулятора АМ с той же частотой, которую слышим в телефонах.

Теперь поиск частоты генерации ГПД весьма облегчится не только на основной частоте ГПД но и на её гармониках. Я это проверил экспериментально, сделав в начале поиск основной частоты (7МГц) и ее второй гармоники (14МГц) в режиме связного приемника, а потом в режиме АМ.

Громкость сигнала и удобство поиска практически одинаковы, единственное отличие – в режиме АМ из-за широкой полосы модуляции и полосы пропускания УПЧ точность определения частоты немного ниже (2-3%), но это не очень критично, т.к. если нет цифровой шкалы, общая погрешность измерения частоты будет определяться точностью механической шкалы контрольного приемника, а здесь погрешность существенно выше ( до 5-10%), потому и предусматриваем при расчете ГПД диапазон перестройки ГПД с некоторым запасом.
Сама метода измерения проста. Переключаем приемник на диапазон 7МГц.

Подключаем один конец небольшого куска провода, например один из щупов от мультиметра, к гнезду внешней антенны XW1 настраиваемого приемника, а второй конец - к гнезду внешней антенны контрольного приемника или просто располагаем рядом с его входной цепью (телескопической антенной) . Поставив ручку КПЕ ГПД в положение максимальной емкости ручкой настройки приемника ищем громкий тональный сигнал, и по шкале приемника определяем частоту. если шкала приемника отградуирована в метрах радиоволны, то для пересчета в частоту в МГц используем простейшую формулу F=300/L( длина волны в метрах).

Далее, подключив к приемнику антенну длиной не менее 5м (желательно наружную) приступаем к настройке контуров ДПФ по максимуму шумов и сигналов эфира по методике, описанной выше.

Простой трехдиапазонный КВ приемник на транзисторах печатная плата

Рис. 8. Печатная плата в формате SprintLayout.

Скачать: kv-priemnik-ppp-layout.zip

Литература:

  1. Поляков В. Приемник прямого преобразования. - Радио, 1977, №11, с.24.
  2. Поляков В. Простой радиоприемник коротковолновика-наблюдателя. - Радио, 2003, №1 с.58-60,№2 с.58-59
  3. Поляков В. Радиолюбителям о технике прямого преобразования. ― М.: Патриот, 1990
  4. Зирюкин Ю. Приемник прямого преобразования. -РадиоЛюбитель №7, 1995 г
  5. Степанов Б.,Шульгин Г. Всеволновый КВ приемник «Радио-87ВПП» - Радио, 1987г. №2, с.19, №3, с.17
  6. Беленецкий С. Однополосный гетеродинный приемник с большим динамическим диапазоном. - Радио, 2005г. №10, с.61-64, №11, с.68-71.
  7. Григоров И. Простой приемник наблюдателя. -Радиоконструктор, 1999г,№12,с.12-13
  8. Беленецкий С. Новый взгляд на смесительный детектор и некоторые аспекты его практического применения.- материалы форума cqham.ru в теме "Современный трансивер прямого преобразования" forum.cqham.ru/viewtopic.php?t=7391&postdays=0&postorder=asc&&start=1860
  9. Морозов В. Узкополосный синхронный фильтр. Радио, 1972, №11, с.53-54
  10. Поляков В.Ключевой смеситель гетеродинного приемника. www.cqham.ru/trx83_64.htm
  11. Погосов А. Модуляторы и детекторы на полевых транзисторах. - Радио, 1981, №10 с.19
  12. Беленецкий С. Я строю простой ППП. www.cqham.ru/prostoy_ppp.htm

Беленецкий С.Э. US5MSQ, г.Луганск, Украина. Радио, №11,12 2008г.