HELLORADIO.RU — интернет-магазин средств связи
EN FR DE CN JP
QRZ.RU > Каталог схем и документации > Схемы наших читателей > Радиолюбительские конструкции > Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Триггеры Шмитта, или несимметричные триггеры на биполярных транзисторах с эмиттерной связью, могут быть использованы для создания простых широкодиапазонных генераторов импульсов (рис. 7.1 — 7.4). Для преобразования триггера Шмитта в генератор достаточно соединить его вход через резистор с выходом, а между входом триггера и общей шиной или шиной питания включить конденсатор [Рл 6/98-33].

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.1

Резистивный делитель, к средней точке которого подключен эмиттер входного транзистора, и времязадающая RC-цепь, образованная дополнительными навесными элементами, и преобразующая триггер в генератор импульсов, составляют мостовую схему. В диагональ моста включен управляющий р-п переход транзистора VT1. Изначально конденсатор С1 разряжен, транзистор VT1 закрыт, VT2 — открыт. Как только напряжение на конденсаторе в процессе его заряда превысит напряжение на средней точке резистивного делителя на доли вольта, входной транзистор VT1 открывается, a VT2 — закрывается. Резистивный делитель обесточивается, времязадающий конденсатор С1 разряжается. В результате разряда конденсатора С1 транзистор VT1 вновь закрывается и открывает транзистор VT2, после чего процесс повторяется вновь и вновь.

Частоту генератора (рис. 7.1) определяет емкость конденсатора С1. Переменный резистор R5 позволяет осуществлять более чем десятикратное изменение частоты. Светодиод HL1 предназначен для визуального контроля перестройки частоты: в начале диапазона яркость свечения максимальна, в конце — минимальна. При напряжении питания 9 В генератор вырабатывает частоту 3...30 Гц. Потребляемый ток (или ток через индикатор HL1) составляет 2...20 мА.

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.2

Генераторы импульсов (рис. 7.2, 7.3) при напряжении питания 9 В работают в области частот 0,8...10 кГц и 0,35...2,8 кГц, соответственно. Генератор (рис. 7.2) управляется изменением соотношения резистивных плеч делителя напряжения (резисторы R4 — R6, правая половина мостовой схемы). Управление режимом работы генератора (рис. 7.3) осуществляется цепочкой резисторов R2 — R4, регулирующих зарядно-разрядные процессы в левой половине мостовой схемы. Забегая наперед важно заметить что исползуя может быть выполнена как на транзисторах так и на микросхеме, далее вы в этоу убедитесь.

Частоту периодических сигналов обычно измеряют аналоговыми или цифровыми измерительными приборами. В устройстве (рис. 7.4) использован цветодинамический способ индикации частоты генерируемых колебаний. Частоту генерации можно изменять в широких пределах переключением конденсаторов С1 — С4. Потенциометр R4 обеспечивает двадцатикратное перекрытие частоты внутри диапазона. На разноцветных светодиодах HL1 (зеленый) и HL2 (красный) выполнен индикатор частоты.

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.3

 

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.4

 Светодиоды установлены под общим светосуммирующим экраном. Плавное изменение частоты работы генератора вызывает перераспределение токов между светоизлучающими диодами. Соответственно, изменяется яркость свечения светодиодов и их суммарная окраска от зеленого свечения (начало диапазона) до красного (конец диапазона). Возможно применение двухцветного светодиода. Генератор перекрывает поддиапазоны частот: 0,7...14 Гц; 7...140 Гц; 70. ..1400 Гц; 0,7...14 кГц.

Для определения частоты генерации по цвету свечения используют принцип «лакмусовой бумаги»: рядом с светосумми-рующим экраном наклеивают полоску цветового спектра, в пределах которого изменяется цвет свечения индикатора. На эту полоску наносят деления, соответствующие значениям частот генерации.

К усилителям класса D относят усилители, в которых входной аналоговый сигнал преобразуется в цифровую форму, а в выходном каскаде осуществляется обратное преобразование.

Для реализации такого рода усилителей используют два способа преобразования исходного аналогового сигнала в цифровой — это широтно-импульсная (ШИМ) и частотно-импульсная модуляция (ЧИМ).

В первом случае ширина синтезированных импульсных сигналов пропорциональна амплитуде входного аналогового сигнала, во втором — изменяемой величиной является частота импульсов. В любом из вариантов усилителей на его выходе (громкоговорителе) импульсный сигнал вновь преобразуется в аналоговый.

Неоспоримым достоинством усилителей класса D является высокий КПД, порой достигающий 98...99%, столь же существенным недостатком — повышенный коэффициент нелинейных искажений, обусловленный неидеальностью процессов прямого и обратного преобразований сигналов.

На рис. 7.5 приведена схема усилителя класса D [Рл 12/99-17]. Он выполнен на основе ШИМ-управляемого мультивибратора на аналоговых ключах микросхемы DA1 типа К561КТЗ [Э 22/88-66] и компаратора DA2 типа KS54CA3. Управление шириной генерируемых импульсов осуществляется за счет изменения сопротивления канала сток — исток полевого транзистора VT1. Выходной сигнал мультивибратора поступает напрямую на инвертирующий вход компаратора DA2 и на неин-вертирующий вход через диодно-резистивную цепочку VD1, R5.

Нагрузкой усилителя является громкоговоритель ВА1 с сопротивлением 8 Ом. Параллельно громкоговорителю включен конденсатор С2 для шунтирования высокочастотных составляющих. При использовании более высокоомной нагрузки величину этой емкости следует пропорционально уменьшить.

Ток, потребляемый устройством в режиме молчания, составляет 2 мА. При наличии входного сигнала амплитудой 0,5...0,7 В потребляемый устройством ток возрастает до 50 мА (нагрузка на выходе — телефонный капсюль ТК-67, ТМ-2В) и до 110 мА (нагрузка на выходе — громкоговоритель с сопротивлением 8 Ом).

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.5

 

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.6

Настройка усилителя сводится к достижению минимальных искажений подбором резистора R2. Неиспользуемые ключи микросхемы DA1.3, DA1.4 можно применить для второго звукового канала (стереофония).

На рис. 7.6, 7.7 приведены схемы усилителей класса D, использующие иной способ преобразования [Рл 12/99-17]. С мультивибратора DA1.1, DA1.2 снимается пилообразный сигнал регулируемой ширины. Компаратор выполнен на ключе DA1.3. Сопротивление замкнутого ключа составляет десятки, сотни Ом, что намного ниже сопротивления выключ! нного ключа. Поскольку длительность пилообразного сигнала определяется амплитудой входного сигнала, длительность пряь эугольных импульсов, сформированных в цепи нагрузки, окажемся пропорциональной амплитуде входных сигналов. Среднее зна1 ение тока в нагрузке, соразмерное длительности импульсов имп /льсных сигналов, будет в итоге соответствовать входному ана/.оговому сигналу, усиленному по мощности.

Высокочастотная составляющая тока шунтируется конденсатором С2. Уровень паразитного БЧ-сигнала в цепи нагрузки можно дополнительно ослабить за счет включения последовательно с телефонным капсюлем (громкоговорителем) дросселя индуктивностью около 10 мГн. Устройство потребляет при напряжении питания 5...9 Б с нагрузкой 7... 10 мА, а без нагрузки — 0,7 мА.

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.7

На рис. 7.7 показан вариант схемы выходного каскада усилителя на транзисторе VT3 с низкоомной нагрузкой с управлением ключом DA1.3. КПД усилителя зависит от соотношения сопротивлений нагрузки и открытого ключа. Усилитель достаточно экономичен и потребляет от источника питания ток в режиме молчания 1,1 мА, а в режиме максимальной громкости — 22 мА.

Генератор пачек импульсов — таймер (рис. 7.8) выполнен на микросхеме DA1 типа К561КТЗ: на элементах микросхемы DA1.1 и DA1.2 собран мультивибратор с регулируемым (потенциометр R3) периодом/частотой следования импульсов; на элементе DA1.4 выполнен таймер (запуск кнопкой SB1, задание экспозиции — потенциометром R6) [Рл 7/98-23]. Транзисторный коммутатор VT1, управляемый элементами DA1.3 и DA1.4 и переключателем SA1, позволяет включать и выключать нагрузку в цепи его коллектора. Ток нагрузки может доходить до 50 мА.

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.8

 

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.9

Генератор импульсов (рис. 7.9) выполнен на KTWO/7-ком-мутаторе — элементах DA1.1, DA1.2 микросхемы К561КТЗ [Рл 6/99-39]. При включении генератора оба ключевых элемента микросхемы разомкнуты. Конденсатор С2 через резистор R5 заряжается до напряжения, при котором ключ DA1.1 замыкается. На резистивный делитель R1 — R3 подается напряжение питания; конденсатор С1 заряжается через цепь из резисторов R4, R3 и часть потенциометра R2. Когда напряжение на положительной обкладке конденсатора С1 достигнет напряжения включения ключа DA1.2, произойдет разряд обоих конденсаторов, и процесс их заряда — разряда будет периодически повторяться.

Потенциометр R2 позволяет изменять величину «стартового» напряжения для заряда конденсатора С1 и, следовательно, частоту генерируемых импульсов в пределах от единиц до десятков Гц. Сопротивление нагрузки или индикатор работы генератора, например, светодиод с токоограничивающим резистором 330 Ом, подключается параллельно резисторам R1 — R3.

Устройство можно использовать в качестве генератора, управляемого напряжением. Для этого вместо напряжения питания подключается управляющее напряжение величиной от 4...5 В до 15 В. С понижением питающего напряжения частота генерируемых импульсов растет.

На неиспользуемых элементах микросхемы — DA1.3 и DA1.4 может быть собран второй генератор импульсов, например, по схеме, изображенной на рис. 7.10.

Генераторы импульсов (триггер Шмитта, на КМОП-коммутаторах)

Рис. 7.10


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Партнеры